歐盟執委會授權各國決定GMO的提案遭抨擊  10月環境部長會議將繼續協商

  歐盟執委會(European Commission)於今(2010)年7月授權歐盟各會員國自行決定禁止或准許基因改造(GM)農作物的提案,過去幾個月來即已不斷遭受外界質疑,在近日(9月27日)召開的農業部長會議上又受到主要歐盟會員國的強烈抨擊;歐盟消費者健康及安全政策部門代表John Dalli表示,這個問題將會在10月14日召開的環境部長會議繼續進行協商。


  事實上,歐盟執委會的提案同時引來了GMO支持者與GMO反對者的譴責,他們認為這項議案會給農民與農產業者製造法律上的不確定空間,徒增困擾;此外,綠色和平組織歐盟農業政策執行長Marco Contiero也表示,各會員國都不應該接受執委會的這項提案,反而必須對執委會施加壓力,以確保農作物的安全並預防環境污染。農業會議上,許多會員國農業部長也擔心執委會的提案不但會分裂農產品國際市場,並也可能與WTO規則相衝突。


  由於預期執委會7月份的提案可能將被撤回或大幅修改,參與農業會議的各國部長也都同意在這過渡時期成立專責的工作小組,以資因應該提案所引致的眾多批評。就現階段看起來,GMO爭議還會在歐盟繼續上演,後續的相關討論值得繼續觀察。

相關連結
※ 歐盟執委會授權各國決定GMO的提案遭抨擊  10月環境部長會議將繼續協商, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5361&no=64&tp=1 (最後瀏覽日:2025/12/23)
引註此篇文章
你可能還會想看
Ofcom公佈「2014年通訊基礎建設報告」

  英國電信管制機關Ofcom於2014年12月8日提出第二版通訊基礎建設報告(Infrastructure Report 2014)。依據英國2003年通訊法(Communications Act 2003)規定,Ofcom必須每三年向英國文化、媒體與體育大臣(Secretary of State for Culture, Media and Sport)提出英國電子通訊網路及服務檢討報告,此次報告是在2011年11月第一版通訊基礎建設報告之後,對於英國現有政策施行情況再進行檢討,重點在於檢視目前整體基礎設施建設情形,內容大致可區分為:1. 網路及服務的覆蓋率、成效以及範圍、2. 頻譜使用、3. 基礎設施共享、4. 安全性與彈性。   在未來整體的規劃上,報告指出以下三項是未來決策者可能會面臨的挑戰,在政策推行與改善時應該一併考量。   一、寬頻普及服務義務:在固網寬頻部分,2009年英國政府推行寬頻普及義務(Universal Service Commitment for Broadband),目前英國超過2Mbit/s的寬頻覆蓋率已達97%,超過10Mbit/s的寬頻覆蓋率則達到85%。在高速寬頻方面,目前已達75%覆蓋率,家戶可接取寬頻速度至少有30Mbit/s。英國政府希望能在2017年使95%可達接取24Mbit/s以上之寬頻。   在行動網路覆蓋率部分,目前英國政府投注一億五仟萬英鎊在新的基礎建設上,希望將行動網路覆蓋率普及於未有服務的家戶,並配合其他政策增加覆蓋率,例如以漫遊、靜態基礎設施共享或MVNO業者來完成。   二、新科技廣泛運用於市場:目前,手機營運商積極推展4G服務,希望終端用戶能達98%之覆蓋率。但在推行之際,尚需要政府的補助,以及法規政策的調整。   三、檢視未來基礎建設的發展:為促進不同科技產業的發展,對固網與行動寬頻速度不斷地進行改善仍為現階段重要的推行項目。因此,應定期依據市場的供需,持續進行政策上的調整。   此外,報告指出,將來在前述三項主要政策推行目標上,除了考量基礎建設應達成的網路速度以外,符合民眾需求的品質經驗等因素亦應一併在政策施行之時納入考量。Ofcom提出之報告重點在於能提供目前英國通訊基礎建設政策推行時之參考指標,此在後續我國的通訊基礎建設方面,亦能做為參酌,以因應物聯網或其他新興科技的迅速發展。

歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題

  歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。   指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。   指引的主要內容包括:   個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。   禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。   GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。   工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。   對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。   「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。   工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。   在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。

歐盟發布《個資侵害通知範例指引》說明個資侵害案例解析以利個資事故因應

  歐洲資料保護委員會(European Data Protection Board, EDPB)於2021年1月18日發布《個資侵害通知範例指引》(Guidelines 01/2021 on Examples regarding Data Breach Notification)草案,並進行為期六週之公眾諮詢。該指引針對2017年10月所發布之《個資侵害通知指引》(Guidelines on Personal data breach notification under Regulation 2016/679)透過案例分析進行補充說明,對於資料控制者如何識別侵害類別以及評估風險提出更詳細的實務建議,協助資料控制者處理資料外洩及風險評估考量因素之認定。   個資侵害係指違反安全性規定而導致傳輸、儲存或以其他方式處理之個資,遭意外或非法破壞、遺失、變更、未獲授權之揭露或近用之情形,由於個資事故將對資料主體可能造成重大不利影響,該指引首先要求資料控制者進行侵害類別之辨識,依據2017年指引將個資侵害分為機密性侵害(confidentiality breach)、完整性侵害(integrity breach)以及可用性侵害(availability breach)。而資料控制者最重要的義務在於主動識別系統漏洞,評估侵害對資料主體權利所產生之風險,制定適當計畫及程序採取適當因應措施,確定侵害事件之問題根因及安全漏洞,加強員工認知培訓及制定操作手冊,並確實記錄各項侵害行為,以提升個資事故因應效率及降低時間延誤。   此外,該指引彙整自GDPR實施以來個資侵害通知具體案例,分為勒索軟體攻擊、資料外洩攻擊、內部人為風險、硬體設備或紙本檔案失竊、誤發郵件以及電子郵件內容外洩,共六大主題十八件案例,針對不同程度風險提供最典型的正確及錯誤作法,並提出資料控制者有關預防潛在攻擊及減輕影響之措施建議。

美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

TOP