為了致力於確保及避免因特定奈米材料的曝露而不經意對環境、健康與安全(Environmental, Health and Safety,簡稱EHS)帶來潛在危害,美國環保署(Environmental Protection Agency,簡稱EPA)預計將於今(2011)年1月針對奈米材料的管理規範公佈三項新規定,此舉將使得EPA更能對於目前既有與未來新興奈米材料上有更充分的管理空間,同時這三項新規定也將接受來自公眾與各界人士的意見評論。
這三項新規定分別與顯著新用途規則(Significant New Use Rule)、試驗規則(Testing Rule)和資料收集規則(Data Collection Rule)有關。首先,就顯著新用途規則而言,多年來相關倡議團體(advocacy group)請求EPA將既有的奈米材料視為是「毒性物質管理法」(Toxic Substances Control Act,簡稱TSCA)下的顯著新用途,依此EPA將可管理奈米銀、奈米級二氧化鈦、奈米級氧化鋅等材料,亦可因此對要求廠商限制產量、採取勞工安全措施、進行毒性測試,並要求廠商不得故意將奈米材料釋出或排放至環境中。雖然現在尚無法確知詳細法令規定,但已知EPA有意透過TSCA第5條處理上述種種問題,其可能作法為奈米材料將不再受既有化學物質並非顯著新用途的限制,而任何以既有化學物質製成的新型奈米材料將被視為是顯著新用途。
其次,則是試驗規則,目前EPA對於特定奈米材料要求進行90日呼吸毒性試驗,而新規定將在TSCA第4條之下,要求對奈米粘土、奈米氧化鋁、奈米管等也進行相同的試驗。此係由於目前在經濟合作開發組織(Organization of Economic Cooperation and Development,簡稱OECD)主導的毒性試驗計畫之下,仍未有其他國家願意主導奈米黏土、奈米氧化鋁的試驗,以及通常90日呼吸毒性測試所費不貲,故未來美國預計率先投入,各界亦期盼EPA所提出的新規定將准予廠商以合作提出申請,以利於降低成本並落實相關試驗。
此外,資料收集規則將要求廠商必須正式遞交相關奈米材料的EHS資料,以供EPA進行評估審查,故新規定將在TSCA第8條之下,將原先EPA「奈米材料管理計畫」(Nanoscale Materials Stewardship Program,簡稱NMSP)的自願性參與改為強制性的資料收集,然而由於TSCA中規定對於僅使用少量奈米材料或作為研究目的者,可申請免除資料收集,故廠商仍可依此排除此一義務。
綜合以上,使用相關奈米材料的廠商應密切觀察未來三項新規定的發展動向,以確定日後如何遵守EPA的相關法令規定,落實風險管控,保障自身權益。
本文為「經濟部產業技術司科技專案成果」
美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
全球創新指數顯示創新活動在疫情期間仍持續增長今(2021)年10月發布的2021年全球創新指數(GII)報告反映了創新如何塑造和維持世界的運作,最明顯的例子就是COVID-19疫苗的快速發展。此外,數位創新也提供了公部門和私部門應對大流行病浪潮的解決方案,例如接觸者追踪工具、應用程序和診斷方法等。 實際上在2020年9月,也就是COVID-19被宣佈為大流行病的六個月後,第13屆年度GII就預測了未來一年的研發支出將保持強勁。儘管大流行病造成了毀滅性的人員傷亡和經濟衝擊,但研發支出、智慧財產權申請和創業投資(VC)交易都在大流行病前的高峰上持續增長。 在2021年的GII報告中提到,在全球研發支出前2,500名的企業中,約有70%已發布了2020年的研發支出數據,從數據中可發現在2020年整體大約有10%的研發支出增長,且大約60%的企業聲稱其研發支出增加。在智慧財產權方面,向世界智慧財產權組織(WIPO)提交的國際專利申請在2020年創下歷史新高。2020年專利申請在醫療技術、製藥和生物技術呈現明顯增長,與前幾年形成鮮明對比,當時數位通信和電腦技術是增長最快的領域。與健康相關領域的專利活動反映了大流行病期間科學活動的持續增長,且鑑於最近醫療保健與加速數位化的研發突飛猛進,可以預期這些領域的專利申請將在未來幾年繼續強勁增長。
美國網紅控訴前員工竊取其成功經營社群媒體之機密計算公式美國J. Cathell公司於2022年12月21日以《保護營業秘密法》(Defend Trade Secrets Act of 2016)、《喬治亞州營業秘密法》(The Georgia Trade Secrets Act)控訴前員工Martin侵害其營業秘密「設計社群媒體發文及服裝策畫計算公式」。 J. Cathell公司是知名引領潮流、設計與旅遊的網紅兼部落客Jess Cathell所成立,其個別社群媒體皆有上千、萬名之追蹤者。其所經營之J. Cathell公司透過Instagram(@j.cathell)與網站(www.jcathell.com)提供前往特定目的地旅遊而設計的服裝,亦融合特定風格與特殊活動,同時提供販售連結。另有經營Facebook(J. Cathell Facebook)、Pinterest(J. Cathell Pinterest)、Like To Know It(下簡稱LTK)(J. Cathell LTK)等社群媒體。該服裝與風格設計是由Jess Cathell針對其客群研析出專屬、非公開之計算公式(營業秘密)所得出之結果。 被告Martin自2020年9月起任職於J. Cathell公司、擔任Jess Cathell的助理。Jess Cathell主張其提供Martin專屬計算公式之使用權限,並投注大量成本教導如何運用計算公式詮釋服裝策畫結果、設計社群媒體發文內容。前述資訊對J. Cathell公司皆具有獨立之實際或潛在經濟價值、他人亦可因被揭露之資訊,或使用該資訊而獲利。 Jess Cathell主張僅有自己、Martin能接觸專屬計算公式,並運用該公式產出設計社群媒體發文及服裝策畫結果。Jess Cathell為了保密,不曾以紙本記錄留存專屬計算公式相關資訊;用於追蹤銷售與其他績效指標的系統,皆以帳號、密碼保護。而Martin知悉該密碼,且於Martin任職期間多有提醒前述資訊之秘密性,Martin針對這些資訊具有保密義務。 Jess Cathell於2022年4月左右,發現WEAR TO WANDER公司(下簡稱WTW公司)成立Instagram、Pinterest、Facebook、LTK等帳號與WTW公司網站,於前述社群媒體發文的格式及概念,與J. Cathell公司於社群媒體發布的內容幾乎相同,並於同年8月發現Martin是WTW公司的創立者。Jess Cathell主張因Martin、WTW公司不當使用其營業秘密「設計社群媒體發文及服裝策畫計算公式」,在短短11個月內,WTW公司的Instagram即獲得近9萬名追蹤者,造成J. Cathell公司之財務與競爭損害,遂於同年12月向法院提出營業秘密侵害訴訟。 本案為首件社群媒體經營產業相關之營業秘密訴訟案件,後續判定將值得關注。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。