美國國際貿易委員會(United States International Trade Commission)最新公布一份報告指出,中國大陸對於侵害智慧財產權(中國大陸稱知識產權)的立法與執法不力,在中國市場降低了美國企業的獲利能力,例如產品被非法與低成本的仿冒。
報告指出,中國大陸因為重大的結構性與體制性障礙,妨礙了對智慧財產權侵害的執法效果,包括地方政府對侵害企業的保護,各政府單位間缺乏協調,執法的資源與人員訓練不足,相關的民刑事法令也缺乏嚇阻效果。
由於中國大陸對智慧財產權侵害的執法不力,助長中國境內廣泛的侵害美國公司的商標、專利、營業秘密等權利,對於許多美國公司,特別是小公司而言,智慧財產權是重要資產,但缺乏在中國境內保護自己智慧財產權的資源。
報告還指出,在2009年所有美國海關扣押貨物的案件中,來自中國大陸佔79%,來自香港佔10%,整體金額達到2.047億美元。中國大陸有24萬家網咖,使用非法軟體。中國大陸的產品與商標仿冒問題仍十分常見,就算是支付權利金,與其他國家比較,中國大陸所支付的智慧財產權利金僅是一小部分。
日本內閣下設之日本經濟再生本部(日本経済再生本部),為實現2017年6月於「未來投資戰略2017」所提出之建立實驗資料共享體制政策,於2017年8月31日起舉辦自動駕駛官民協議會(自動走行に係る官民協議会),邀請政府相關部門及民間專家等關係人士,檢討自動駕駛實驗結果、實驗資料之共享,以及根據民間需求進行實驗計畫之工程管理等制度的整備方向,預計於年內針對複雜的駕駛環境制定共通指標,以釐清哪些資料是應收集之實驗資料,建構自動駕駛實驗資訊共享、收集體制。自動駕駛官民協議會預計在未來幾次會議中,針對應收集之實驗資料、標準格式、體制、實驗計畫的進程管理、官民合作事項等進行討論,並將在未來投資會議中報告檢討結果,其結果將與明年度之成長戰略一同反映於「官民ITS‧構想藍圖」(官民ITS構想・ロードマップ)中。
網路拍賣之法制趨勢 日本文化廳發布《人工智慧著作權檢核清單和指引》日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。
美國國家公路交通安全管理局公布車輛網路安全最佳實踐,呼籲業界遵循美國國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)於2022年9月9日公布2022年最新版本之當代車輛網路安全最佳實踐(Cybersecurity Best Practices for the Safety of Modern Vehicles),強化政府對先進聯網車輛網路安全之把關。 文件將網路安全實踐項目區分為「一般網路安全最佳實踐」及「車輛技術網路安全最佳實踐」兩塊,前者主要為公司整體組織網路安全文化與監管機制之建立;後者則偏重於技術性的建議內涵。 「一般網路安全最佳實踐」共有45項要點,核心概念為:公司應訂定明確的網路安全評估程序,由領導階層負責相關監督責任,定期執行網路安全之風險評估及第三方公正稽核,並對其所發現之風險弱點採取保護措施並持續監控,同時應妥善保存所有網路安全相關之紀錄文件,並鼓勵與車輛同業聯盟彼此分享學習經驗。對於組織成員應適當提供網路安全教育訓練。於產品設計時,應將產品使用者、售後服務維修商,以及可能的外接式電子設備所帶來之風險一併納入安全設計考量。 「車輛技術網路安全最佳實踐」共有25項,核心理念為:對於產品開發人員,應建立存取權限管理,避免有心人士濫用權限。產品所使用的加密技術應隨時更新,若車輛具備診斷功能,應慎防遭到不當利用,且應防止車輛所搭載之感測器遭到惡意干擾或改動,感測器所收集到之資料則應能免於網路攻擊或竊取。應特別注意無線網路設備、空中軟體更新(Over-the-air, OTA)以及公司作業軟體所產生之風險漏洞。 本文件屬於自願性質,無法律強制力。但NHTSA期望在現有的車輛產業網路安全標準上,例如國際標準組織與國際汽車工程師協會(International Standards Organization, ISO/SAE International, SAE)先前所訂定的車輛網路安全標準ISO/SAE 21434的基礎前提下,進一步提出政府對車輛網路安全要求的努力。