歐盟電子通訊隱私指令(Directive 2002/58/EC on Privacy and Electronic Communications, e-Privacy Directive)針對cookie(即業者為辨別使用者身份而儲存在用戶端上的資料)設置的規範,於2009年修正,將在今年在5月25日之前全面施行。歐盟跟據該項規定,要求業者,當其使用cookie追蹤網路使用者的使用行為時,必須取得網路使用者的「明示同意」,且每隔一年,業者皆必須重新取得該項「同意」,網路使用者亦得隨時撤回。實務上對於該項同意究竟應由業者「主動」要求,亦或「被動」等待網路使用者以允許cookie設置方式而直接視為同意,仍有爭議。
儘管如此,英國政府仍已決定內化該指令,制定其國內cookie設置規範。英國資訊委員會(Information Commission)將提出指導原則,協助業者遵循該規範。相關政府單位,亦已開始著手協助業者重新設定網頁瀏覽器。有關當局表示,英國政府將會在歐盟限定的期限內推動此規範,不過,該歐盟指令係強制規範,業者是否能在短期內完成該規範遵循仍有疑議。針對此點,英國政府已通令其資訊委員會,對於已著手改正其隱私規範並重新設置瀏覽器的業者,即便未於期限內完成該規範遵循,亦不受罰。英國未來實施的cookie設置規範究竟會如何發展,仍待觀察。
歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)(舊稱歐盟網路與資訊安全局European Union Agency for Network and Information Security)於2020年2月4日發布資通安全驗證標準化建議(Standardisation in support of the Cybersecurity Certification: Recommendations for European Standardisation in relation to the Cybersecurity Act),以因應2019/881歐盟資通安全局與資通安全驗證規則(簡稱資通安全法)(Regulation 2019/881 on ENISA and on Information and Communications Technology Cybersecurity Certification, Cybersecurity Act)所建立之資通安全驗證框架(Cybersecurity Certification Framework)。 受到全球化之影響,數位產品和服務供應鏈關係複雜,前端元件製造商難以預見其技術對終端產品的衝擊;而原廠委託製造代工(OEM)亦難知悉所有零件的製造來源。資通安全要求與驗證方案(certification scheme)的標準化,能增進供應鏈中利害關係人間之信賴,降低貿易障礙,促進單一市場下產品和服務之流通。需經標準化的範圍包括:資訊安全管理程序、產品、解決方案與服務設計、資通安全與驗證、檢測實驗室之評估、資通安全維護與運作、安全採購與轉分包程序等。 ENISA認為標準化發展組織或業界標準化機構,在歐盟資通安全之協調整合上扮演重要角色,彼此間應加強合作以避免重複訂定標準。目前有三組主要國際標準可構成資通安全評估之基礎: ISO/IEC 15408/18045–共通準則與評估方法:由ISO/IEC第1共同技術委員會(JTC1)及第27小組委員會(SC27)進行重要修訂。 IEC 62443-4-2–工業自動化與控制系統之安全第4-2部分:作為工業自動化與控制系統元件的技術安全要求。 EN 303-645–消費性物聯網之資通安全:由歐洲電信標準協會(ETSI)所建立,並與歐洲標準委員會(CEN)、歐洲電工標準化委員會(CENELEC)協議共同管理。 然而,資通訊產品、流程與服務種類繁多,實際需通過哪些標準檢驗才足以證明符合一定程度的安全性,則有賴驗證方案的規劃。為此,ENISA亦提出資通安全驗證方案之核心構成要件(core components)及建構方法論,以幫助創建歐盟境內有效的驗證方案。
歐盟提出通用型人工智慧模型的著作權管理合規措施建議歐盟提出通用型人工智慧模型的著作權管理合規措施建議 資訊工業策進會科技法律研究所 2025年07月23日 為推動以人為本且值得信賴之人工智慧(Artificial Intelligence, AI)應用,同時確保高度保護健康、安全及歐盟《基本權利憲章》所載之基本權利,包括民主、法治及環境保護,防止AI在歐盟境內造成有害影響,並依據歐盟《人工智慧法》(AI Act, AIA)第1條第1項支持創新。歐盟人工智慧辦公室(The European AI Office) 於2025年7月10日提出《人工智慧法案》關於通用型人工智慧的準則(The General-Purpose AI Code of Practice)[1],以下簡稱「GPAI實踐準則」。 該準則由辦公室擬定計劃邀集通用型人工智慧(以下簡稱GPAI)模型提供商、下游提供商、公協會、權利人、專家學者、民間團體組成工作小組,進行討論與草擬。目的在協助GPAI模型的提供者符合AIA要求其應訂定模型技術文件,提供給下游提供者,並應制定著作權政策、發布訓練內容摘要的規定。預計將自 2025 年 8 月 2 日起適用。 壹、事件摘要 歐盟GPAI實踐準則包括透明度、著作權與安全維護(Transparency, Copyright, and Safety and Security)三大章節。為證明符合AIA第53條及第55條所規定義的指導文件(guiding document),並確保GPAI提供者(providers)遵守其在《人工智慧法》下之義務,於該準則於著作權章節提供適用AIA第53條第1項(c)款規定[2]的措施建議。 該準則強調採取相關措施可以證明符合前揭定之義務,但符合歐盟著作權及相關權利法規,並不以遵守該準則為要件,而且也不會影響歐盟著作權及相關權利法規的適用與執行,其權利最終歸屬法院。而著作權人依法保留的權利,以及針對文字與資料探勘(Text and Data Mining, TDM)的例外或限制 (EU 2019/790號指令第4條第1項),仍應在合法條件下適用。 考量到一些GPAI提供者是新創企業,規模有別於一般企業,故該準則亦強調其所要求採取的是相稱措施(proportionate measures),應與提供者之規模相稱且合乎比例(commensurate and proportionate),並充分考量中小企業(SMEs),包括新創公司(startups)之利益。 貳、重點說明 該準則建議GPAI提供者,採取訂定著作權政策、合法重製、尊重權利保留、積極防止侵權、提供問責管道等五大著作權管理措施。 一、訂定、維持並實施著作權政策 為證明已符合AIA第53條第1項(c)款所負之義務,GPAI提供者針對其投放於歐盟市場之通用人工智慧模型,應制定政策以遵守歐盟著作權及相關權利法規。該準則建議提供者應將著作權章節所列措施納入於政策中,公開發布並維持最新狀態其著作權政策摘要,且在組織內部指派負責實施和監督。 二、獲取合法可存取之受著作權保護內容 GPAI提供者進行 EU 2019/790號指令第2條第2項之文字與資料探勘及訓練其通用人工智慧模型進行網際網路內容的重製並擷取時,例如使用網路爬蟲(web-crawlers)或授權他人使用網路爬蟲代其抓取(scrape)或以其他方式編譯資料,應防止或限制對作品及其他受保護標的物之未經授權行為,特別是應尊重訂閱模式(subscription models)或付費牆(paywalls)所施加之任何技術性拒絕或限制存取。而且在進行網路爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站。 三、識別並遵守權利人的權利保留 GPAI提供者文字與資料探勘及訓練其通用人工智慧模型,其網路爬蟲應識別並遵守EU 2019/790號指第4條第3項的機器可讀(machine-readable)權利保留[3],讀取並遵循機器人排除協議(Robot Exclusion Protocol, robots.txt)。 該協議包括任何經網際網路工程任務組(Internet Engineering Task Force,IETF)證明技術上可行且可由AI提供者和內容提供者(包括權利人)實施之版本,或經國際或歐洲標準化組織採納透過基於資產(asset-based)或基於位置(location-based)之詮釋資料(metadata)等其他方式的機器可讀協議。亦包括通常係透過在歐盟層級經由權利人、AI提供者及其他相關利害關係人參與討論所達成共識的識別方案。 GPAI提供者亦應透過公開該等資訊並提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠取得相關資訊,包括所用的網路爬蟲、所採識別並遵守權利保留之措施。 四、降低著作權侵權輸出之風險 為降低整合GPAI模型的下游人工智慧系統(downstream AI system),生成可能侵害著作權或相關權利的作品或其他標的物GPAI提供者應實施適當且合乎比例之技術保障措施,防止其模型生成以侵權方式重製受歐盟著作權及相關權利法規保護之訓練內容。;同時,在使用政策、條款與條件或其他類似文件中禁止模型用於著作權侵權目的。對於以自由及開源授權(free and open source licenses)發布之GPAI模型,應在隨附文件中請使用者注意禁止模型用於著作權侵權用途。無論是將模型整合至其自身的人工智慧系統,或係依據契約關係提供給他人。 五、提供聯繫受理管道 GPAI提供者應提供與受影響權利人進行連繫的管道與資訊,讓受影響之權利人及其代理人(包括集體管理組織(collective management organizations))以電子方式進行投訴。同時,勤勉、非任意地並在合理時間內處理投訴,除非投訴明顯無根據,或已對同一權利人提出之相同投訴作出回應。 參、事件評析 美國先前於2025年6月23日曾由加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出AI訓練行為可主張合理使用的簡易裁決(summary judgment)[4]。但法官仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定,並不支持盜版一本本來可以在書店購買的書籍對於創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。 這次歐盟的準則更明確指出,GPAI提供者進行文字與資料探勘及訓練其通用人工智慧模型,以網路爬蟲(web-crawlers)進行網際網路內容的擷取,應尊重訂閱模式(subscription models)或付費牆(paywalls)所採取的技術性拒絕或限制存取。而且在進行網路內容爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站,即訓練資料的取得必須是合法。而且必須積極使用可識別並遵守機器人排除協議(Robot Exclusion Protocol, robots.txt)的技術,更應透過公開該等資訊、提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠及時知悉所用網路爬蟲、所採尊重權利保留之措施。 雖然前揭美國法院案件正在進行審理,但顯然與歐盟的GPAI實踐準則及美國著作權局的合理使用立場[5]一樣,均不認同迴避權利保護施、自盜版網站取得的資料之情況。我國日前發生七法與法源公司之間的著作權訴訟,七法以網路爬蟲爬取法源公司於使用條款限制存取的資料,並非技術創新撞上不合時宜的舊有法律框架,而是創新應用仍應在合理保護權利的前提下進行。 歐盟GPAI實踐準則所揭示的政策制訂、尊重權利保留、積極防止侵權、提供有效且給予合理回應的問責管道等AIA合規要求,已提示GPAI的開發、服務提供,應如何透過公開、揭露措施來配套降低科技創新應用過程對既有權利的影響,也指引其應建立的內部管理與外部溝通重點。對於開發、運用GPAI對外提供服務的企業而言,在爭執訓練資料應有合法空間的同時,或許應該思考是否應先採取歐盟GPAI實踐準則所建議的措施,以尊重既有權利的態度,積極降低權利人的疑慮,始有助於形成互利的合法利用空間。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai。(最後閱覽日:2025/07/21) [2]該條款要求將通用人工智慧模型投放於歐盟市場(Union market)之提供者,必須制定政策以遵守歐盟著作權及相關權利法規,特別是透過最先進之技術,識別並遵守權利人依據《第2019/790號指令》(Directive (EU) 2019/790)第4條第3項所表達之權利保留。 [3]指不接受其著作被用於文字與資料探勘目的之利用。 [4]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [5]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
eBay網站因販賣仿冒品被法國法院判決敗訴並須賠償原品牌業者繼eBay 於 今年6月4日因未制止網拍業者於eBay 網站上拍賣仿冒品被法國法院( The Tribunal de Grande Instance in Troyes)判決敗訴 、 須與網拍業者共同賠償精品業者愛瑪士 (Hermes)2萬歐元後,不到一個月的時間,另一法國法院( The Tribunal de Commerce in Paris) 於6月30日再度判定eBay因任由網拍業者拍賣仿冒物品而需賠償LVMH集團共3860萬歐元並禁止eBay在其網站上販賣LVMH集團旗下包括迪奧(Dior)、嬌蘭(Guerlain)、紀梵希(Givenchy)及Kenzo 4個品牌之香水。 eBay 表示為了保護品牌業者的智慧財產權,其已投資了超過2000萬美元建置相關機制(The Verified Rights Owner) 讓品牌業者可以容易的發現仿冒的網拍品並通知eBay 將該物品下架。但愛瑪士及LVMH集團皆認為該機制尚不足以杜絕仿冒品的銷售。 針對LVMH之判決,Vanessa Canzini, eBay 的發言人表示 “如果有仿冒品出現在eBay 的網站上, eBay會迅速地將該物品下架,但此次的判決非關仿冒品”。 Sravanthi Agrawal, eBay 的另一發言人表示 “此次判決的重點在銷售管制 (指LVMH集團企圖壟斷其銷售管道),因eBay 並非LVMH集團所授權的銷售管道之一”。 eBay 表示LVMH集團的壟斷行為將對消費者造成傷害,將代表消費者提起上訴。 以上兩案經由法國法院針對拍賣網站提供平台販售仿冒品之判決結果預計將於國際間引發連鎖效應。一位美國智財律師表示美國法院目前認為在美國商標法下,eBay 有義務將仿冒品從其網站上移除。而法國法院的判決則更進一步要求拍賣網站在仿冒品被放上網站拍賣前就有義務制止其被拿出來販售。法國法院的見解如未被推翻將可能鼓勵其它國法院針對類似案件做出相同的判決結果。
英國民航局發布航空AI監管策略三文件,以因應AI於航空領域之挑戰與機會英國民用航空局(United Kingdom Civil Aviation Authority, CAA)於2024年12月3日發布「CAA對新興AI驅動自動化的回應」(The CAA's Response to Emerging AI-Enabled Automation)、「航空人工智慧與先進自動化監管策略」(Part A:Strategy for Regulating AI and Advanced Automation in Aerospace)以及「CAA 應用AI策略」(Part B: Strategy for Using AI in the CAA)等三份文件。首先,前者概述CAA對於AI應用於航空領域之總體立場,強調以確保安全、安保、消費者保護及環境永續等前提下,促進AI技術在相關航空領域之創新與應用;其次,「航空人工智慧與先進自動化監管策略」著重說明如何於航空領域監管AI技術之使用,以兼顧推動創新並維持安全性及穩健性;最後,「CAA 應用AI策略」則聚焦於CAA內部使用AI技術提升監管效率與決策能力的策略。 由於AI正迅速成為航空產業之重要技術,其應用範圍包含航空器、機場、地面基礎設施、空域、航太、消費者服務等,具有提高航空安全性、運作效率、環境永續性與消費者體驗之潛力。然而,相關技術風險與監管挑戰亦伴隨而至,仍需新的監管框架應對潛在風險。因此,總體而言CAA以推動AI創新技術、提升航空產業效率與永續性為目標,透過了解技術前景、建立AI通用語言,並以航空領域之五大原則為監管框架之制定核心,建立靈活的AI監管體系,維持最高水準的安全保障。五大原則及案例分述如下: (1) 安全、安保與穩健性(Safety, Security and Robustness),例如:使用AI分析航空器感測器資料進行預測維護,以利提早發現問題。 (2) 透明與可解釋性(Transparency and Explainability),例如:清楚記錄AI系統如何提出空中交通路線建議。 (3) 可質疑性與矯正機制(Contestability and Redress),例如:制定一套明確的流程,以便航空公司查詢並了解AI生成的安全建議。 (4) 公平與偏見(Fairness and Bias),例如:確保自動化旅客篩查安檢系統公平對待所有旅客。 (5) 問責與治理(Accountability and Governance),例如:明確界定AI系統在機場運營中的監管角色與職責。 .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}