為邁向低碳經濟時代,建立歐洲成為具競爭力之低碳經濟體,歐盟執委會(European Commission)於2011年3月8日向歐洲議會(European Parliament)提出「2050低碳經濟策略規劃(A Roadmap for Moving to a Competitive Low-Carbon Economy in 2050)」,並設定2050年低碳總目標,宣示將透過加強低碳技術研究發展、推動能源效率使用等方式,降低對石化燃料依賴,並提昇區域內更多就業機會。
隨著近期中東與北非地區石油危機,原油價格節節高升,已嚴重影響歐洲國家每年能源支出經費,並降低未來各國經濟成長率。歐盟執委會認為,必須積極促進歐洲國家,經由投入科技研發、提昇能源效率,有效抑制不斷提昇的能源成本,推動歐盟邁向低碳經濟社會;並且,所設定目標及推動措施,倘若有所遲緩或推延,越晚投入將導致日後所需投入經費成本更為昂貴,悔不當初。「2050低碳經濟策略規劃」所設定之目標為,規劃透過各種符合成本效率(Cost-Efficient)措施及方法,推動歐盟區域內溫室氣體排放量至2030年降低40%、至2040年降低60%、至2050年降低80%(以1990年排放量為基準),達成低碳經濟願景目標。
歐盟執委會表示,未來應強化推動低碳技術之研究發展,促進未來更廣泛運用,並強調應更全面加強推動策略性能源科技研究計畫(Strategic Energy Technology Plan , SET-Plan),未來10年內歐盟將再額外增加50 billion歐元投資,加強推動能源科技相關研發工作,及未來可供運用之工具措施。
「2050低碳經濟策略規劃」中,詳細規劃推動步驟,並區分各大領域分別施行。以電力部門(Power Sector)領域為例,運用低碳技術、潔淨技術設備所產製電力,至2020年將達到降低45%--60%比例之排放量,到2050年,所有發電技術之溫室氣體排放量更將降低至可接近於0;而對於「工業部門」所設定目標,2050年達成降低80%之目標,對於「家庭及辦公建築」部份,設定2050年可降低90%之目標,而「運輸部門」則設定於2050年達成降低60%之目標。此外,歐盟執委會更指出投資「智慧電網(Smart Grid)」的重要性,將可促使「需求端(Demand-Side)」更具效率性,更廣泛且分散之電力調配中心,以及啟動運輸系統電力化之時代。
低碳經濟社會所帶來福祉,並可降低歐盟每年能源支出,及對於石化燃料進口依賴程度,也促成轉變改以低碳技術產製電力能源,作為可行的替代因應方案;以及,低碳經濟社會型塑推動,除了投入經費研發技術外,相關運用更須透過教育、訓練、推廣,廣泛使大眾接受且樂於使用新興技術,如此未來將可衍生種類與數量均會更多之就業機會,也有助益於經濟成長;此外,推動低碳經濟亦可改善生活品質及健康生活,未來實際效應可改善公共健康、減少醫療費用支出、及降低對生態環境消耗破壞,均屬良善效益。
然而,歐盟執委會這些推動措施,亦傳出有反對聲音。「歐洲商業(Business Europe)」團體就對外表示,他們反對「2050低碳經濟策略規劃」所設定的這些超高標準,他們認為相關推動措施,未來將會嚴重傷害歐盟境內企業發展,因為主要競爭者如中國、日本及美國,相較而言,均未設定這麼高的推動目標。未來歐盟執委會這些規劃藍圖是否落實達成,值得後續觀察。
本文為「經濟部產業技術司科技專案成果」
韓國以「生成式人工智慧著作權指引」提醒著作權侵權風險 資訊工業策進會科技法律研究所 2024年05月15日 創作內容的流通利用是發揮文化經濟力的核心關鍵,但大數據和機器學習技術的快速發展,人工智慧(以下簡稱AI)已成功應用於許多內容生成,大幅推進圖像、影音、文本的識別、處理、分析、甚至生成等創作成本,但從實現生成式AI而建立基礎模型開始,到AI產出物的生成,均存在可能侵權或被侵權的風險。如何衡平考慮著作權人和使用者立場,促進人工智慧技術發展和相關產業發展,同時努力營造尊重人類創作活動的著作權生態系統,已成為各國必須思考因應重要課題。 壹、事件摘要 韓國文化體育觀光部的著作權委員會於2024-01-16發布「生成式人工智慧著作權指引(생성형 AI저작권안내서)」[1],這份指引的目的是希望對涉及生成式人工智慧(Generative AI)產出過程中的各方(AI業者、著作權人、AI使用者)提供有關著作權的注意事項。因為韓國文化與著作權主管機關認為,雖然隨著人工智慧技術的迅速發展,在各個領域的應用為經濟和社會利益產生許多助益,但也出現了一個無法預測的環境,影響到著作權產業和創作活動的各個方面;有人將生成式AI用作創作工具,同時也有人擔心生成式AI可能帶來的經濟損失和就業威脅等問題。因此,韓國著作權委員會成立了由學界、法界和技術界專家以及利害關係人組成的「AI-著作權制度改善工作小組」,於2023年2月成立,以審查生成式AI引發的著作權問題並尋找應對方法,並根據該工作小組的討論而編寫提出該指引[2]。 貳、重點說明 該指引從實現生成式AI而建立基礎模型開始,到AI產出物的生成,聚焦於可能引發法律爭議的數據學習和AI產出物生成部分,從現行著作權法的角度說明AI業者、著作權人和AI使用者需要了解的內容。同時為幫助理解,亦納入介紹目前提供的生成式AI案例以及相關的國內外立法趨勢。但該指引特別說明其發布並非為提供其國會正在討論的著作權法修訂方向,而是為了在未來通過進一步的討論、研究和意見徵求過程等,制定出合理的解決方案,並透過制定衡平考慮著作權人和使用者立場的著作權法律制度,促進人工智慧技術發展和相關產業發展,同時努力營造尊重人類創作活動的著作權生態系統[3]。 該指引架構主要分為五大主題[4],同時提供問答集與附錄參考資料。五大主題分別為: 一、生成式AI技術與著作權(생성형 AI 기술과 저작권)[5]:從著作權角度看生成式AI技術,說明生成式AI技術的意義和應用案例。 二、對AI經營者的指導(AI 사업자에 대한 안내사항)[6]:包括生成式AI的學習階段的風險、AI產出物的生成階段的風險、建議採取防範措施以區別AI產出物與人類創作物。例如人工智慧業務經營者在提供相關服務時,確保不會產生與現有作品相同或相似的人工智慧輸出;該指引並建議參酌韓國2023 年 5 月提出的《內容產業振興法》修正提案(法案編號2122180)[7]規定,於人工智慧產出內容中應標示係採用人工智慧技術製作[8]。 三、對著作權所有人的指導(저작권자에 대한 안내사항)[9]:在AI學習階段應考慮的事項、防止AI產出物侵犯著作權的建議。該指引特別建議如果著作權人不希望其作品用於人工智慧學習,可以透過適當方式表達反對,以防止作品被用於人工智慧學習;即使著作權人後來得知自己的作品被用於人工智慧學習,亦可適當地採取技術手段來防止,以避免放任使用產生默許的問題。包括使用例如“Glaze”、“Photo Guard”等此類新的防止技術。 四、對AI使用者的指導(AI 이용자에 대한 안내사항)[10]:提醒注意生成式AI使用可能涉及的著作權侵犯情況,並說明在研究、教育、創作等領域的倫理和政策考慮。例如,提醒使用者將現有作品原樣輸入提示視窗或輸入誘導創作相同或相似作品的文字,從而創建與現有作品相同或相似的人工智慧輸出,然後將其發佈到平台上的方法,將存有侵權風險。即使是用人工智慧學習歌手聲音而重新創作或產生現有歌手的歌曲,也會涉及重製或輸入侵權資料的疑慮。同時,對學術研究或投稿,該指引特別建議在論文等中引用生成人工智慧撰寫的文章之前檢查其來源,並標註特定段落是以什麼人工智慧工具與指令所生成。 五、AI產出的著作權登記(AI 산출물과 저작권 등록)[11]:與AI產出物相關的著作權爭議、AI產出物是否可以登記著作權、有關AI產出物著作權登記的國內外案例、登記時應注意的事項等。該指引強調對於不能被視為在任何表達行為中做出人類創造性貢獻的人工智慧輸出,不可能進行著作權註冊。但在人類以創意方式進行修改、增加等“額外附加工作”(추가 작업)的情況下,該額外工作的部分才會被認定為具有著作權屬性,可以進行著作權登記。但是,著作權註冊的效果僅限於附加的部分(추가 작업한 부분)[12]。 另該指引在問答集中主要釋疑相關疑義,例如:為什麼AI的學習會涉及著作權問題?如果無法確定AI學習所使用的作品的權利人,AI業者如何獲得合法使用權?個別提示用於製作AI產出物也受著作權保護嗎?AI產出物是否無法受到著作權法保護?等等韓國文化與著作權主管機關認為常見或已出現爭議的案例,並依其現行法令或見解趨勢,提供主管機關的看法或解答。 此外,為協助其讀者更深入了解人工智慧的原理、爭議與國際發展趨勢,該指引並精要的整理出下述主題,包括:使用人工神經網絡進行學習的過程、生成式AI相關訴訟和著作權爭議、國內外AI相關應對情況、國內廣播公司和新聞機構有關AI學習資料取得的政策條款等補充明,做為該手冊的附錄資料。特別是其所整理之政策條款,顯示韓國新聞媒體已著手因應被用於AI訓練、學習與內容產生的風險。 參、事件評析 綜觀韓國文化體育觀光部的著作權委員會發布「生成式人工智慧著作權指引」可以看出,韓國認為生成式人工智慧在文創領域的議題,目前較為迫切需要處理的是創作人的著作權於AI訓練時被侵權,與創作時運用AI的侵害他人權利的風險,以及AI生成內容的識別與可保護範圍的界定,但促進人工智慧技術發展和相關產業發展,均為韓國關切議題;AI在未來如何衡平考慮著作權人和使用者立場尚待研析建立共識並透過國會立法修正著作權法律制度。 因此,該手冊除提供AI的技術背景說明外,並強調該指引並非修法政策的官方說明,同時以如何降低風險與維護權益的角度,提醒生成式人工智慧(Generative AI)產出過程中的AI經營者、著作權人、AI使用者,提供有關著作權的注意事項與例如防制技術運用、標註AI生成等預防措施。同時為再進一步幫助理解,除風險說明外並以問答方式強化重點提示,並舉相關媒體的AI訓練資料提供政策實例供參考,內容本身精要但附錄細節說明詳盡,但對於未必了解著作權法令的文創領域從業人員而言,內容簡明且建議措施直接具體,值得我國主管機關訂定相關指引之參考。 [1]「生成型人工智慧著作權指引(생성형 AI저작권안내서)」,檔案下載https://www.copyright.or.kr/information-materials/publication/research-report/view.do?brdctsno=52591#(最後瀏覽日:2024/05/25)。 [2]詳前註指引之前言,頁6~7。 [3]同前註。 [4]其中尚有第六主題說明未來的法令整備規劃,此部分較屬政策措施方向,較非指引重點,故本文此處未予列入說明重點。 [5]同前註指引,頁7。 [6]同前註指引,頁15。 [7]去年5月,國會文化體育觀光委員會委員長李相憲提出了《內容產業振興法》的部分修正案,其中包括對人工智慧製作的內容強制貼上人工智慧標籤。該修正案目前正在國民議會審議中。https://www.4th.kr/news/articleView.html?idxno=2056520,(最後瀏覽日:2024/05/25)。 [8]同前註1指引,頁21。 [9]同前註1指引,頁23。 [10] 同前註1指引,頁29。 [11]同前註1指引,頁39。 [12]同前註1指引,頁41。
新加坡資料共享法制環境建構簡介新加坡資料共享法制環境建構簡介 資訊工業策進會科技法律研究所 2019年12月31日 壹、事件摘要 如何有效運用資料創造最大效益為數位經濟(Digital Economy)重點,其中資料共享(data sharing)是有效方法之一。新加坡自2018年以來推動「資料共享安排」機制(Data Sharing Arrangements, 下稱DSAs)與「可信任資料共享框架」(Trusted Data Sharing Framework),建構資料共享環境,帶動國內組織[1]資料經濟發展與競爭力。 貳、重點說明 自從2014年新加坡政府推行「2025智慧國家(Smart Nation)」以來,即積極鋪設國家數位經濟建設,大數據資料分析等數位科技發展為其重點,預估2022年60%國內生產總值將與數位經濟有關[2] 。其中,希望透過資料共享促進組織、政府、個人三方間資料無障礙流通,降低蒐集、處理與利用成本,創造更多合作機會進行創新應用,因此從法制面、環境面與技術應用層面打造完善的資料共享生態系統(data sharing ecosystem)[3]。 然而依據《個人資料保護法》(Personal Data Protection Act 2012,下稱個資法)第14條以下規定,組織蒐集、處理與利用個人資料應取得當事人同意,除非符合第17條研究目的等例外情形。由於資料共享強調可將資料進行多節點快速傳遞近用,使資料利用價值最大化,因此若依據個資法規定每次共享皆須事前獲得當事人同意,將使近用成本增高並間接造成資料流通產生障礙。因此為因應國家政策與產業需求,新加坡個人資料保護委員會(Personal Data Protection Commission, 下稱個資委員會)依據個資法第62條所賦予的豁免權(exemption),個人或組織可在遵循個資委員會訂定的規則下,依照個案給予組織免除個資法部分規範[4] ,而DSAs機制即是一種[5]。 DSAs是由個資委員會於2018年設立的沙盒(sandbox)計畫,如組織所進行的共享模式是在特定群體並範圍具體明確,同時不會造成個人有負面影響等情事,可在不須經個人同意下進行資料共享[6]。並且,為進一步提升組織與消費者間信任,2019年6月個資委員會與資訊通信媒體發展局(Info-Communication Media Development Authority of Singapore,下稱資通發展局)共同推出「可信任資料共享框架」指南建議,由政府擔任監管角色,組織只要符合指南建議方向,如遵循法律、達到一定資料技術應用品質與實施資安與個資保護措施下,可以進行個人與商業資料之共享,DSAs機制是共享方法之一。以下簡述新加坡個資法規範、指南建議與DSAs機制運作方式。 圖1:資料共享環境建構 資料來源:新加坡資通發展局 一、新加坡個人資料保護法規範 在沒有個資法第17條所列之例外情形下,依據第14條以下規定,組織如近用個人資料應獲得個人同意,同時應符合目的使用及通知義務,尤其應給予個人可隨時撤回同意之權利[7]。 同時組織應根據個人要求,提供近用個人資料之方法、範圍與內容,以及更正錯誤資料權利[8]。並且組織必須任命資料保護官(Data Protection Officer, DPO)隨時向大眾提供通暢的個資聯絡管道,來確保個資透明性與完整性[9]。 在資料保護措施上應有合理安全的資安防護技術,以保障資料不被未經授權近用的風險。當使用目的不在時,需妥善保留或予以去識別化,同時如須境外轉移資料時,境外之資料保護措施應至少與新加坡個資法規範標準相同[10]。 二、免除同意之DSAs機制 DSAs機制是由個資委員會於2018年設立的沙盒(sandbox)計畫,也就是組織可透過申請免除資料共享前必須獲得個人同意之規範。然而如組織擬向個資委員會申請DSAs機制,必須符合三個條件[11]: 共享範圍需在特定群體、期間與組織內:即只限定在具體特定的應用情境內,若超出申請範圍,例如分享至其他非申請範圍的組織,則須再經過個資委員會批准[12]。 近用目的需具體明確:即資料共享必須應用於特定且明確目的,如以「社會研究目的」作為申請則範圍過大不夠明確[13]。 近用資料對於個人不會有不利影響,或公共利益大於個人利益:例如共享目的不是直接用於銷售或存在合法利益,或是共享本身具備公共利益且明顯大於個人可預見的(foreseeable)不利影響,此時個資委員會可考慮同意組織申請免除[14]。 三、建立以信任為基礎之資料共享模式 雖然取得DSAs機制免除同意可以使資料近用方式更為簡便,然而在進行資料共享前,仍應有完善的技術品質與資安保護措施,因此在「可信任資料共享框架」指南建議中,組織應透過法律遵循、導入AI或區塊鏈等新興技術,並具備相應資安保護措施來建構可信任的資料共享環境,實際步驟可分為以下四階段[15]: 圖2:可信任資料框架 資料來源:新加坡資通發展局 第一階段為「資料共享建構」[16],由組織自行評估存有的商業或個人資料是否具共享價值與潛在利益,並要如何進行共享,例如資料共享方式屬於雙邊(bilateral)、多邊(multilateral)或是分散式(decentralized,又稱「去中心化」)。以及資料種類有哪些,如主資料(master data)、交易資料、元資料(metadata)、非結構化資料(unstructured data)等。組織可將資料共享方式、種類依據無形資產(intangible asset)評價方式,即市場法(market approach)、成本法(cost approach)與收入法(income approach)三種評價方法進行評價,來衡量共享之價值性。除資料價值判斷外,組織必須自行評估自身組織與將來之合作夥伴是否有足夠能力管控共享之資料,包括是否具備一定技術能力的資安與資料保護措施等。 第二階段為「法律規範考量」[17],即決定哪些資料可以進行共享,從規範面檢視個資法、競爭法與銀行法等是否有例外不得共享規定,例如信用卡號碼或個人生物識別資訊不得共享。若資料共享類型不會對個人造成不利影響或具備公共利益,並有通知(notification)個人給予選擇退出(opt-out)的機會,組織可依個案申請DSAs機制之豁免。同時另外鼓勵組織向IMDA申請資料保護信任標章(Data Protection Trustmark, DPTM)認證,透過認證機制使消費者更能信任組織運用其個人資料[18]。 第三階段為「技術組織考量」[19],包含組織是否有能力建立資安風險管理與個資侵害之因應措施,是否有即時將資料安全備份技術,並針對不同傳輸技術如有線/無線網路、遠端存取(VPN)、應用程式介面(API)、區塊鏈等區分不同資安防護與風險管理能力。 最後一階段為「資料共享操作」,當已準備進行資料共享時,需再次檢視是否已符合前三個階段,包含透明性、責任義務、法律遵循、近用資料方式與取得目的外利用同意等[20]。 參、事件評析 個人資料視為21世紀驅動創新的重要價值,我國部會亦開始討論「個資資產化」的可能[21]。面對數位經濟時代來臨,有效運用數位科技將潛藏個人資料的大數據進行加值利用,不僅有利組織與創新發展,更可回饋消費者享有更好的產品與服務。 新加坡政府以資料共享作為數位經濟發展重點方向之一,在具備一定程度技術能力、資安保護措施與組織控管之條件下,可向主管機關申請免除個人同意之規範。透過一定法規鬆綁讓資料利用最大化以創造產業創新價值,同時依據主管機關要求的保護措施,使消費者信賴個人資料不會遭受不當利用或侵害。DSAs機制與「可信任資料共享框架」指南之建立,適時調適個人資料保護規範與資料應用間的衝突,並提供組織進行資料共享之依循建議,作為推動該國數位經濟發展方針之一。 [1]組織(organisation)依據新加坡個人資料保護法(Personal Data Protection Act 2012)第2條泛指個人、公司、協會、法人或團體。 [2]INFOCOMM MEDIA DEVELOPMENT AUTHORITY 【IMDA】, Trusted data sharing framework (2019), at 7, https://www.imda.gov.sg/-/media/Imda/Files/Programme/AI-Data-Innovation/Trusted-Data-Sharing-Framework.pdf (last visited Sep. 11, 2019). [3]id. [4]Personal Data Protection Act 2012 (No. 26 of 2012) §62, “The Commission may, with the approval of the Minister, by order published in the Gazette, exempt any person or organisation or any class of persons or organisations from all or any of the provisions of this Act, subject to such terms or conditions as may be specified in the order.” [5]Data Sharing Arrangements, PDPC, https://www.pdpc.gov.sg/Overview-of-PDPA/The-Legislation/Exemption-Requests/Data-Sharing-Arrangements (last visited Dec. 1, 2019). [6]id. [7]IMDA, supra note 2, at 31; Personal Data Protection Act 2012 (No. 26 of 2012) §14, 16, 20. [8]id. Personal Data Protection Act 2012 (No. 26 of 2012) §21. [9]IMDA, supra note 2, at 31. [10]id. at 32. Personal Data Protection Act 2012 (No. 26 of 2012) §24-26. [11]id. [12]PERSONAL DATA PROTECTION COMMISSION【PDPC】, Guide to Data Sharing (2018), at 14, https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Other-Guides/Guide-to-Data-Sharing-revised-26-Feb-2018.pdf (last revised Oct. 3, 2019). [13]id. [14]id. [15]PDPC, supra note 4. at 28. [16]id. at 21, 23-25. [17]id. at 35 [18]id. at 30. Data Protection Trustmark Certification, IMDA, https://www.imda.gov.sg/programme-listing/data-protection-trustmark-certification (last visited Sep. 26, 2019). [19]id. at 41-47. [20]id. at 50-51. [21]林于蘅,〈自己的個資自己賣!國發會擬推「個資資產化」〉,聯合新聞網,2019/06/17,https://udn.com/news/story/7238/3877400 (最後瀏覽日:2019/10/1)。
日本創設搭載遠距型系統自駕車基準緩和認定制度日本國土交通省於2017年2月修正《道路運輸車輛安全基準》第55條第1項、第56條第1項及第57條第1項規定之告示,放寬車輛安全基準規定,期望自動駕駛實驗能順利展開。惟在各種自動駕駛實驗中,遠距型自動駕駛系統是透過電信通訊技術,從遠距離外操作車輛行駛,儘管修法後已放寬安全基準規定,但其仍與現行以車內有駕駛為前提而訂定之《道路運輸車輛安全基準》相距甚遠,想一律判斷其符合安全基準有所困難。據此,為使遠距型自駕系統道路實驗能夠順利進行,國土交通省於2018年3月30日創設「搭載遠距型系統自駕車基準緩和認定制度」,明確規定遠距型自駕系統實施道路實驗所需各項手續。 「搭載遠距型系統自駕車基準緩和認定制度」規定項目包括︰申請放寬基準之對象、申請者、申請書及繳交文件、審查項目、條件及限制、基準放寬之認定、車體標示、行政處分等。
美國聯邦地方法院駁回臨床試驗軟體公司Medidata對競爭對手Veeva的營業秘密訴訟美國紐約南區聯邦地方法院(S.D.N.Y.)於2022年7月15日駁回了臨床試驗軟體公司Medidata Solutions Inc. (以下簡稱Medidata公司)控告競爭對手Veeva Systems Inc. (以下簡稱Veeva公司)竊取其營業秘密的請求。 原告Medidata公司於2017年1月指控被告Veeva公司陸續挖角其數名離職員工,部份員工離職時私自拷貝公司檔案,其中包含原告的產品研發、商業策略等營業秘密,而被告根據這些資訊開發了和原告相似的軟體,造成其重大損害,因此向被告請求4.5億美元的損害賠償。 被告Veeva公司抗辯雖然這些員工離職時私自保留原告的檔案,但原告在訴訟中並未明確說明哪些屬於該公司的營業秘密,亦即未特定營業秘密標的;此外,即便這些離職員工自行保留的檔案中有包含原告所稱之營業秘密,但原告提出的證據不足以證明被告有不當取用(misappropriation)其營業秘密,僅根據被告有僱用原告離職員工等事實,即推論被告有不當取用。原告試圖透過此模糊和毫無根據的主張,限制產業的創新、競爭、人才流動。 本案歷經五年的纏訟,法院最終駁回原告請求。法官指出,原告在整個訴訟過程中並未明確定義哪些資訊屬於營業秘密,原告似乎認為任何資訊皆屬於其營業秘密,這樣的主張無異於代表任何公司永遠無法挖角其他公司的員工,因為這些員工到新公司任職後所說的任何話,都會間接地揭露他們在之前工作中所學習到的事情,因此駁回原告之訴。 從本案可以觀察到,企業應定期盤點公司內部資訊,明確界定營業秘密範圍,並落實管理及妥善留存相關證據,發生侵害營業秘密爭議時才能有效舉證。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」