歐盟執委會提出「2050低碳經濟策略規劃藍圖」

  為邁向低碳經濟時代,建立歐洲成為具競爭力之低碳經濟體,歐盟執委會(European Commission)於2011年3月8日向歐洲議會(European Parliament)提出「2050低碳經濟策略規劃(A Roadmap for Moving to a Competitive Low-Carbon Economy in 2050)」,並設定2050年低碳總目標,宣示將透過加強低碳技術研究發展、推動能源效率使用等方式,降低對石化燃料依賴,並提昇區域內更多就業機會。



  隨著近期中東與北非地區石油危機,原油價格節節高升,已嚴重影響歐洲國家每年能源支出經費,並降低未來各國經濟成長率。歐盟執委會認為,必須積極促進歐洲國家,經由投入科技研發、提昇能源效率,有效抑制不斷提昇的能源成本,推動歐盟邁向低碳經濟社會;並且,所設定目標及推動措施,倘若有所遲緩或推延,越晚投入將導致日後所需投入經費成本更為昂貴,悔不當初。「2050低碳經濟策略規劃」所設定之目標為,規劃透過各種符合成本效率(Cost-Efficient)措施及方法,推動歐盟區域內溫室氣體排放量至2030年降低40%、至2040年降低60%、至2050年降低80%(以1990年排放量為基準),達成低碳經濟願景目標。


    歐盟執委會表示,未來應強化推動低碳技術之研究發展,促進未來更廣泛運用,並強調應更全面加強推動策略性能源科技研究計畫(Strategic Energy Technology Plan , SET-Plan),未來10年內歐盟將再額外增加50 billion歐元投資,加強推動能源科技相關研發工作,及未來可供運用之工具措施。



  「2050低碳經濟策略規劃」中,詳細規劃推動步驟,並區分各大領域分別施行。以電力部門(Power Sector)領域為例,運用低碳技術、潔淨技術設備所產製電力,至2020年將達到降低45%--60%比例之排放量,到2050年,所有發電技術之溫室氣體排放量更將降低至可接近於0;而對於「工業部門」所設定目標,2050年達成降低80%之目標,對於「家庭及辦公建築」部份,設定2050年可降低90%之目標,而「運輸部門」則設定於2050年達成降低60%之目標。此外,歐盟執委會更指出投資「智慧電網(Smart Grid)」的重要性,將可促使「需求端(Demand-Side)」更具效率性,更廣泛且分散之電力調配中心,以及啟動運輸系統電力化之時代。



  低碳經濟社會所帶來福祉,並可降低歐盟每年能源支出,及對於石化燃料進口依賴程度,也促成轉變改以低碳技術產製電力能源,作為可行的替代因應方案;以及,低碳經濟社會型塑推動,除了投入經費研發技術外,相關運用更須透過教育、訓練、推廣,廣泛使大眾接受且樂於使用新興技術,如此未來將可衍生種類與數量均會更多之就業機會,也有助益於經濟成長;此外,推動低碳經濟亦可改善生活品質及健康生活,未來實際效應可改善公共健康、減少醫療費用支出、及降低對生態環境消耗破壞,均屬良善效益。



  然而,歐盟執委會這些推動措施,亦傳出有反對聲音。「歐洲商業(Business Europe)」團體就對外表示,他們反對「2050低碳經濟策略規劃」所設定的這些超高標準,他們認為相關推動措施,未來將會嚴重傷害歐盟境內企業發展,因為主要競爭者如中國、日本及美國,相較而言,均未設定這麼高的推動目標。未來歐盟執委會這些規劃藍圖是否落實達成,值得後續觀察。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐盟執委會提出「2050低碳經濟策略規劃藍圖」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5429&no=64&tp=1 (最後瀏覽日:2026/01/23)
引註此篇文章
你可能還會想看
歐盟資料保護工作小組修正通過GDPR個人資料當事人同意指引

  因應歐盟「通用資料保護規則」(The General Data Protection Regulation,或譯為一般資料保護規則,下簡稱GDPR)執法之需,針對個人資料合法處理要件之一當事人「同意」,歐盟資料保護工作小組(Article 29 Data Protection Working Party, WP29)特於本(2018)年4月10日修正通過「當事人同意指引」(Guidelines on consent under Regulation 2016/679),其中就有效同意之要件、具體明確性、告知、獲得明確同意,獲有效同意之附加條件、同意與GDPR第6條所定其他法定要件之競合、兒少等其他GDPR特別關切領域,以及依據指令(95/46/EC)所取得之當事人同意等,均設有詳盡說明與事例。   GDPR第4條第11項規定個人資料當事人之同意須自由為之、明確、被告知,及透過聲明或明確贊成之行為,就與其個人資料蒐集、處理或利用有關之事項清楚地表明其意願(unambiguous indication)並表示同意。殊值注意的是,如果控制者選擇依據當事人同意為任何部分處理之合法要件,須充分慎重為之,並在當事人撤回其同意時,即停止該部分之處理。如表明將依據當事人同意進行資料之處理,但實質上卻附麗於其他法律依據,對當事人而言即顯係重大不公平。   換言之,控制者一旦選擇當事人同意為合法處理要件,即不能捨同意而就其他合法處理的基礎。例如,在當事人同意之有效性產生瑕疵時,亦不允許溯及援引「利用合法利益」(utilise the legitimate interest)為處理之正當化基礎。蓋控制者在蒐集個人資料之時,即應揭露其所依據之法定要件,故必須在蒐集前即決定其據以蒐集之合法要件為何。

日本貿易振興機構設立「東南亞智財網絡」以因應日本產品仿冒問題

  日本貿易振興機構(Jetro)於2月21日公開表示將在3月設立「東南亞智財網絡」以作為協助在東南亞活躍的日本企業智財活動的平台。該網絡之辦事處將設在Jetro的曼谷事務所內,以支援前進東南亞的日本企業智財活動。   在目標朝向2015年區域經濟整合的東南亞國家聯盟(ASEAN)中,對日本企業來說,期待能夠在智慧財產的領域中也制定ASEAN共通的規劃,提升專利與商標等智慧財產權利取得的速度,及強化仿冒與盜版的取締效果,而各國政府也正著手擬定「ASEAN智財行動計劃2011-2015」與改善智財相關的各個議題。雖然已經可以看見各國進行協調的動作,不過迄今為止還看不到域內共通的智財制度建置,其它像是迅速取得權利、有效取締仿冒等的問題對日本企業來講也還有很多需要改善的地方。   在前述背景下,Jetro表示,將以Jetro曼谷事務所作為辦事處,在3月啟動「東南亞智財網絡」。這個網絡將作為在東南亞各主要國家日本企業智財擔任人員所結集而成的IPG(Intellectual Property Group)辦事處,協助智財保護的各種活動、流通資訊、舉辦研討會與讀書會、向當地主管機關提出建言等等,將以促進ASEAN域內設立智財共通制度及建立各國協調的智財制度作為最終目標。   「東南亞智財網絡」主要預定的活動包括,(1) 東南亞各國域內日本政府、IPG與成員間在智財領域的相互合作及資訊共享;(2)透過各國IPG等團體向東南亞及ASEAN當局交換意見與提出建言;(3)與國際智慧財產保護論壇(IIPPF)的合作。在2012年則預定將舉行以下等活動,包括3月12日在新加坡召開的啟動會議與智財研討會、7月向ASEAN智財互助事務部(AWGIPC)提出建議書、參與日本人商工會議所連合會(FJCCIA)與ASEAN祕書長的對話等等。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

德國專利商標局和中國大陸國家知識產權局延長了專利審查高速公路(PPH)試點項目之合作期限

  德中專利審查高速公路(The Patent Prosecution Highway,以下簡稱PPH)試點項目自2012年1月23日啟動,為期兩年,PPH的啟動將有助於協助企業在海外盡快取得專利權。申請人可在德國專利商標局(Das Deutsche Patent- und Markenamt Amt,以下簡稱DPMA)和中國大陸國家知識產權局(State Intellectual Property Office of the People's Republic of China,以下簡稱SIPO)提出專利加速審查的申請。爾後,德中PPH試點項目再於2014年1月23日起延長兩年。該項目原定於2016年1月22日終止,DPMA和SIPO進一步將試點項目延長兩年至2018年1月22日止。   在德中PPH試點項目框架下,申請人可向DPMA或SIPO提出首次申請,一旦首次申請受理局(Office of First Filing,以下簡稱OFF)認為申請人提出的專利請求項中至少有一項被認定可能具有可專利性,則申請人可向後續申請受理局(Office of Second Filing,以下簡稱OSF)提出請求加速審查該申請案。而OSF將以OFF的初步檢索審查結果為基礎,進一步獨立執行專利審查。   DPMA已長期與SIPO密切合作,並於2015年7月6日加入全球專利審查高速公路(Global Patent Prosecution Highway,以下簡稱GPPH),德國的專利申請案將能於加入GPPH的國家申請加速審查。目前包括DPMA在內共有21國專利局加入GPPH項目,與DPMA另外有PPH協議的合作專利局則有9個,德國加入GPPH後,既有的PPH協議將被GPPH取代。而SIPO目前尚未加入GPPH,與DPMA仍維持採行PPH協議。

TOP