英國數位、文化、媒體暨體育部(Department for Digital, Culture, Media & Sport, DCMS)於2022年12月9日公布「應用程式商店經營者與開發者實踐準則」(Code of practice for app store operators and app developers),並規劃在未來九個月內要求Apple、華為、Microsoft等公司採行,以加強對消費者的隱私與資安保護。 根據該實踐準則之內容,APP商店經營者和開發者須滿足以下要求: (1)以友善使用者的方式與消費者共享資安和隱私資訊,如APP何時將無法在商店中取得、APP最近一次更新的時間、APP儲存與處理使用者資料的位置等。 (2)即便消費者禁用部分可選的功能與權限(如不允許APP使用麥克風或追蹤使用者位置),該APP仍可正常執行。 (3)制定穩定且具透明性的APP審查程序,以確保滿足實踐準則中資安與隱私最低要求的APP方能在商店內上架。 (4)當APP因資安或隱私原因無法於商店內上架時,向開發者提供明確的反饋。 (5)制定妥適的弱點揭露程序如聯絡表單(contact form),使軟體缺陷可在非公開(避免受駭客利用)的情況下被報告及解決。 (6)確保開發者即時更新其APP,以減少APP中的安全弱點數量。 總體而言,實踐準則要求APP必須具備相關程序,使安全專家能夠向開發者報告軟體弱點、確保安全性更新對消費者足夠醒目,以及將資安與隱私資訊透過明確易懂的方式提供給消費者。
調和國際標準!美國食藥署提出醫療器材品質系統規則修正草案美國食藥署(US Food and Drug Administration, FDA)於2022年2月23日提出「醫療器材品質系統規則修正草案(Medical Devices; Quality System Regulation Amendments proposed rule)」。本次修正旨在釐清現行條文與國際標準ISO13485醫療器材品質管理系統之異同,並進行適度調和。 根據修正說明,草案就現行條文與ISO13485一致之處將予保留,不一致者若屬落實授權母法「美國聯邦食品藥粧法(US Federal Food, Drug and Cosmetics Act, FD&C Act)」之必要內容,將斟酌條文用詞明確性調整後予以保留,其餘將予刪除。此外,草案也透過名詞解釋界定不同用語之定義範疇,嫁接現行條文與ISO13485落差處。對於現行條文中,與ISO13485性質相同但內容產生衝突之條文,基於依授權母法意旨,以現行條文為準。 FDA注意到,部分FD&C Act所重視的品質管理系統要求,在ISO13485中並未被重點凸顯,如記錄控管(control of records)、醫材標示(device labeling)及包裝控管(packaging controls)。本次修正特別針對此三部分保留並增補較ISO13485要求更為詳細的規範內容。在記錄控管部分,除依照ISO13485要求,記錄標的應為日期及簽署確認外,進一步依據FD&C Act規定,要求特定的服務及執行紀錄應予以紀錄,以作為醫材報告之內容。此外,也規定應詳實記錄醫療器材單一識別碼(Unique Device Identification, UDI)。在醫材標示及包裝控管部分,由於ISO13485僅指出產品應標示及包裝,但未詳述細節要求。因此,本次修正保留現行條文對於標示及包裝的細節性規定,以確保產品安全性及有效性。 本草案目前進入意見徵集期間,時間自2022年3月25日起至2022年5月24日止。後續FDA將視所徵集之意見,決定是否調整草案內容或公告施行。本次修定將使醫療器材品質系統規則與ISO13485趨於一致,預計可減輕廠商行政作業及支出負擔。
美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。 《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括: 1.對決策過程進行描述,比較分析其利益、需求與預期用途; 2.識別並描述與利害關係人之協商及其建議; 3.對隱私風險和加強措施,進行持續性測試與評估; 4.記錄方法、指標、合適資料集以及成功執行之條件; 5.對執行測試和部署條件,進行持續性測試與評估(含不同群體); 6.對代理商提供風險和實踐方式之支援與培訓; 7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款; 8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄; 9.自透明度的角度評估消費者之權利; 10.以結構化方式識別可能的不利影響,並評估緩解策略; 11.描述開發、測試和部署過程之紀錄; 12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源; 13.無法遵守上述任一項要求者,應附理由說明之; 14.執行並記錄其他FTC 認為合適的研究和評估。 當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。
日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書」2017年6月28日日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書-以實現產業整合(Connected Industries)為目標-」。日本政府為能持續推動該國經濟,以建立創新附加價值的產業社會為目標,以實現產業整合並促進創新與競爭環境,於本年度一月至六月召開七次「第四次產業革命競爭政策研究會」,進行日本競爭政策檢討,並於28日發佈第一階段報告書。 本報告中提出四種大數據應用的商業模式,分別為:單獨成長型、附隨應用型、他面活用型與多面展開型四種。單獨成長型著重於產品或服務本身透過資料蒐集應用來改善品質。附隨應用型則除了透過資料搜集以進行產品與服務品質改善以外,亦擴散經驗運用到其他使用者的服務內容改善。他面活用型則透過產品或服務的資料蒐集,運用到其他的領域(例如駕駛資料的蒐集運用到保險費率的計算)。多面展開型則將多種不同的產品與服務的資料取得後綜整分析以能相互提升品質,或應用到新發展的領域。 報告中並提出資料運用對競爭環境影響的三個關鍵步驟。首先是資料本身的影響力,包括資料本身的必要性、資料品質、蒐集成本等。其次為資料蒐集的可能性,因其他競爭者也可能取得相同資料,故應確保資料的稀少性與蒐集能力的差異(與競爭者能區別)。第三是資料運用可能性,應注意資料應用上是否有資金、人才在競爭上的其他限制。