歐盟生醫研究積極籌組歐盟研究基礎設施聯盟(ERIC)

  歐盟自2009年6月通過並於同年8月生效之「第723/2009號歐盟研究基礎設施聯盟法律架構規則」(COUNCIL REGULATION (EC) No 723/2009 of 25 June 2009 on the Community legal framework for a European Research Infrastructure Consortium (ERIC),簡稱第723/2009號規則),其乃希望能促進各會員國間各自分散的研究基礎設施(Research Infrastructures,簡稱RIs)之資源凝聚及共享,讓原本僅為設施設備的RIs整合起來,透過由3個以上歐盟會員國作為某特定ERIC成員之方式,依第723/2009號規則向歐盟執委會提出ERIC設立申請,經執委會同意後,ERIC即可取得獨立法律地位及法律人格,以自己名義獲得、享有或放棄動產、不動產及智慧財產,以及締結契約及作為訴訟當事人,並得豁免無須被課徵加值稅(value added tax)和貨物稅(excise duty)等稅賦。歐盟創設ERIC法律架構之目的,是希望能透過國際合作、彙集國際資源,在歐盟建立起頂尖研發環境,吸引跨國研發活動集中與進駐,利用規模化的大型研究基礎設施導引出世界級研發。

  截至目前,由奧地利、比利時、捷克、德國、荷蘭等國作為成員及瑞士作為觀察員所建立之「歐盟健康、老化及退休調查」(The Survey of Health, Ageing and Retirement in Europe,簡稱SHARE),乃是歐盟首次提出申請且正式設立之ERIC。SHARE-ERIC乃一大型的人口老化多國研究資料庫,並已收錄45,000筆以上年齡50歲以上個人之健康、社經地位及社會家庭網絡之跨領域及跨國籍資料,SHARE-ERIC之資料分析除將有助歐盟國家就老化社會之福利系統為規劃,更預期將成為推動其活動及健康老化歐盟創新伙伴試行計畫之重要基石。

  除此之外,自2008年起由歐盟撥款500萬歐元籌備成立之「生物銀行及生物分子資源研究基礎機構」(Biobanking and Biomolecular Resources Research Infrastructure,簡稱BBMRI),從2008年至今(2011)年1月底3年籌備期間,已募得30個以上國家之53個會員聯盟以及280個聯繫組織(大部分為生物銀行),預計將建立成為最大的泛歐生物銀行,病患及歐盟人口之樣本與資料之介面,以及頂尖生醫研究之介面,且為了要BBMRI-ERIC,BBMRI指導委員會業已擬定「BBMRI-ERIC備忘錄」提供予有興趣之會員國家簽署,希望能在今年底前成立BBMRI-ERIC。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐盟生醫研究積極籌組歐盟研究基礎設施聯盟(ERIC), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5490&no=64&tp=1 (最後瀏覽日:2025/12/08)
引註此篇文章
你可能還會想看
歐盟預計投入4700萬歐元強化中小企業智慧財產權的保護

  歐盟執委會及歐盟智慧財產局(European Union Intellectual Property Office, EUIPO)於2022年1月10日共同宣布啟動第二輪的歐盟中小企業基金(EU SME Fund),以強化中小企業的智財管理與布局。   歐盟於2020年11月發布了《智慧財產權行動計畫(Action Plan on Intellectual Property)》,並推出中小企業基金,在2021年間共補助12,989家的中小企業,補助金額達680萬歐元。由於成效不錯,因此歐盟推出第二輪的中小企業基金,其金額高達4700萬歐元,補助期間為2022年至2024年。歐盟指出,中小企業在保護創新上需要有相關的工具及資金,目前規劃的補助項目如下: 補助中小企業申請智財檢視服務(IP Scan service)90%的費用。該項服務是在2021年6月推出,內容為中小企業智財布局的諮詢,以及協助檢視其無形資產(intangible assets)的創新潛力。 補助中小企業向各會員國智財局、歐盟智財局(EUIPO)、比荷盧智財局(Benelux Office for Intellectual Property, BOIP)申請商標、設計註冊75%的費用。 補助中小企業向世界智慧財產權組織(WIPO)取得國際商標和設計保護50%的費用。 2022年將補助中小企業向各會員國專利局申請專利註冊50%的費用。 2023年預計進一步納入補助的項目包含:補助中小企業進行專利先前技術檢索、專利申請的部分費用;律師諮詢費(如專利註冊、授權協議、智財鑑價、替代性紛爭解決機制等事項的諮詢。)   歐盟希望透過上述的方式,協助中小企業在疫情期間加速數位轉型,強化無形資產的智財布局和管理,以提升歐盟中小企業的競爭力。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試

  《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。   《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括:   1.對決策過程進行描述,比較分析其利益、需求與預期用途;   2.識別並描述與利害關係人之協商及其建議;   3.對隱私風險和加強措施,進行持續性測試與評估;   4.記錄方法、指標、合適資料集以及成功執行之條件;   5.對執行測試和部署條件,進行持續性測試與評估(含不同群體);   6.對代理商提供風險和實踐方式之支援與培訓;   7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款;   8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄;   9.自透明度的角度評估消費者之權利;   10.以結構化方式識別可能的不利影響,並評估緩解策略;   11.描述開發、測試和部署過程之紀錄;   12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源;   13.無法遵守上述任一項要求者,應附理由說明之;   14.執行並記錄其他FTC 認為合適的研究和評估。   當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。

英國通過《大英能源法》,設立國營大英能源公司推動淨零與能源安全

面對能源轉型與全球淨零排放目標挑戰,英國於2025年5月15日通過《大英能源法》(Great British Energy Act 2025),法規授權內閣大臣(Secretary of State)指定一間由王室全資持有且依《2006年公司法》(Companies Act 2006)設立之股份有限公司為「大英能源公司」(Great British Energy, GBE)。 根據法規,GBE核心任務包括:推動潔淨能源發展、改善能源效率、降低碳排放、確保能源供應安全,並促進公平供應鏈(包含防止奴役與人口販運),GBE經營模式強調地方參與,須透過具社會效益之專案推動轉型工作。 為支持其營運,法規授權內閣大臣可對GBE提供各種形式的財務援助,包括補助、貸款、擔保、收購股份或資產等。此外,內閣大臣亦有權對GBE發布具拘束力之政策性指示(Directions),並需針對其營運擬定「策略優先事項」(strategic priorities),以成為GBE業務規劃之依據。惟上述優先事項不得涉蘇格蘭、威爾斯或北愛爾蘭議會專屬權限事項,除非經當地部門同意。 為確保公共資源使用之透明性,GBE必須每年向內閣大臣提交財報,內閣大臣再將財報提交國會。同時GBE須每五年接受一次獨立人士(independent person)的績效審查,獨立人士再將績效報告提交國會。法規亦要求GBE應持續檢討其業務對英國永續發展之影響,以確保符合國家長期發展方向。 本法適用於英格蘭、威爾斯、蘇格蘭及北愛爾蘭,並自2025年5月15日正式生效。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP