韓國特許廳自2000年12月開始提供「技術公開網路服務」,透過此網站服務,研究人員可將其研發的技術公開、並登載在韓國特許廳的技術公開網站,藉以取得具公信力的公開日期。假若網站上公開的技術與先申請專利的其他技術相似,但其公開日期較早,那麼網站上公開的技術會被認為他人申請專利時的先前技術(prior art),他人就無法取得專利權。此一服務的目的在於希望企業或個人的研究開發成果可防止他人以相同或類似的技術申請專利,作為一種防禦手段。另公開的研發成果也可提供公眾免費使用,進而促進整體產業的發展。
為改善「技術公開網路服務」,增加使用上之便利性,韓國特許廳2011年10月起推出新的「技術公開網路服務」系統,規定必須載明公開的必要記載項目(包括標題、相關領域、目的、技術組成內容),以利其他人得以簡便地了解被公開的技術內容。利用人可到韓國特許廳建置之「專利資訊檢索服務(Korea Intellectual Property Rights Information Service, KIPRIS) 」網站進行檢索,搜尋所需之技術內容。
研發者可以將自己的發明想法公開,防止他人就同一或類似技術申請專利;同時任何人皆可查詢利用已經公開的技術,避免重複研發,也可讓業界掌握技術發展的最新動向,以促進技術之活用。
事前承認制為日本基於科研成果廣泛運用之目的,透過產業技術力強化法第19條的增修正式引入拜杜法制度後,針對政府資助研發成果移轉或授權予計畫外第三人的情形賦予委託機關與執行單位的義務。在日本拜杜法制度下,政府資助研發成果的相關專利權原則上得歸屬於執行單位,但考量到這些研發成果若移轉給未預備活用該些成果之人,將會造成由國家資金所衍生的科研成果難以被運用,從而無法達成促進成果運用的法目的,因此在該法第19條第4項增訂事前承認制。 依該制度,執行單位若欲讓與歸屬於執行單位之政府資助研發成果所涉及專利權給第三人,或將使用該些專利權的權利設定或移轉予第三人時,除了符合政令所定不妨礙專利權運用之情形外,委託機關須和執行單位約定為上開移轉等行為前,須先取得委託機關的同意。
歐盟發佈Amazon違反反托拉斯法之初步調查結果,並將對其電商業務展開第二輪調查歐盟執委會於2020年11月10日對Amazon發佈反托拉斯調查之初步調查結果,針對其2019年7月之首次調查提出調查意見書(Statement of Objections, SO),認定Amazon使用大量非公開賣家資料,減少自身作為零售商之競爭風險,相關可能違反歐盟運作條約(TFEU)第102條禁止濫用市場主導地位。 歐盟於2019年7月17日對Amazon展開首次反托拉斯調查。Amazon作為平台,具有雙重身分,第一個身分是作為零售商,在網站上銷售商品;第二個身分是作為平台商,提供第三方賣家銷售商品的市場。因此歐盟認為Amazon在平台上收集價格或活動統計資料,將調查Amazon和第三方賣家的標準協議中,是否允許Amazon分析賣家的買賣統計資料?以及第三方賣家使用「黃金購物車」(Buy Box)的機制為何? 歐盟執委會調查說明,Amazon作為平台,可以大量使用第三方賣家資料,例如訂購及發貨數量、賣家收入、報價次數、物流資料、賣家表現評價、消費者索賠資訊等。然而相關統計數字及資料進入Amazon業務自動化系統,使Amazon零售業務可以大量使用上述非公開資料,以調整自身產品零售報價和業務決策,降低自身作為零售商的市場競爭風險。 此外,歐盟執委會認為,Amazon的「黃金購物車」和「Prime label」機制,使平台上的第三方賣家必須選擇使用Amazon物流、倉儲和售後服務(Fulfillment by Amazon, FBA),才能取得平台的「黃金購物車」和「Prime label」標章,才可能增加產品搜尋曝光度、交易成功率,進而提高銷售量(據統計,Amazon平台超過八成之交易是透過黃金購物車完成)。因此導致消費者大多選擇購買曝光度高、也就是使用Amazon物流的賣家,形成賣家之間的不公平競爭。歐盟執委會後續將啟動第二輪調查,且未言明結束調查時間。
日本修訂醫藥品強化綜合戰略日本內閣於2017年6月閣議決定「經濟財政營運與改革基本方針2017」,設定醫藥品項倍增目標,並計畫檢討在2020年9月前達成學名藥使用率80%以上之推動政策。基於上開方針,為實現「安定供應國民優良品質醫藥品」、「醫療費效率化」、「產業競爭力強化」等目的,厚生勞動省於2017年12月22日修訂「醫藥品產業強化綜合戰略~著眼全球展開之新藥研發」,希望日本醫藥品產業能從依賴「長期收載品」之商業模式,轉向具備更高新藥開發能力之結構。 「醫藥品產業強化綜合戰略」主要修訂內容如下︰(1)改善日本技術、相關知識等研究開發環境︰如推動癌症基因醫療、資料庫整備、利用AI進行醫藥品研究開發等;(2)透過藥事規制改革減低醫療成本和提高效率︰如善用附條件認可制度,以及先驅審查制度之制度化等;(3)醫藥品生產、製造等基礎設施之整備︰如制定相應之新技術品質管理等規範;(4)適當評價之環境、平台整備︰如各種臨床指引之整備;(5)向海外推廣日本製造之醫藥品︰如制定國際法規調適戰略等;(6)促進新藥開發業界之新陳代謝和全球化創新企業︰支援新創企業之人才育成、金融市場之整備等;(7)改善醫療用醫藥品之流通︰如制定流通改善指引等。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。