韓國特許廳推動「技術公開網路服務」,公開技術達到防禦性功能且促進公眾利用

  韓國特許廳自2000年12月開始提供「技術公開網路服務」,透過此網站服務,研究人員可將其研發的技術公開、並登載在韓國特許廳的技術公開網站,藉以取得具公信力的公開日期。假若網站上公開的技術與先申請專利的其他技術相似,但其公開日期較早,那麼網站上公開的技術會被認為他人申請專利時的先前技術(prior art),他人就無法取得專利權。此一服務的目的在於希望企業或個人的研究開發成果可防止他人以相同或類似的技術申請專利,作為一種防禦手段。另公開的研發成果也可提供公眾免費使用,進而促進整體產業的發展。

  為改善「技術公開網路服務」,增加使用上之便利性,韓國特許廳2011年10月起推出新的「技術公開網路服務」系統,規定必須載明公開的必要記載項目(包括標題、相關領域、目的、技術組成內容),以利其他人得以簡便地了解被公開的技術內容。利用人可到韓國特許廳建置之「專利資訊檢索服務(Korea Intellectual Property Rights Information Service, KIPRIS) 」網站進行檢索,搜尋所需之技術內容。

  研發者可以將自己的發明想法公開,防止他人就同一或類似技術申請專利;同時任何人皆可查詢利用已經公開的技術,避免重複研發,也可讓業界掌握技術發展的最新動向,以促進技術之活用。

相關連結
※ 韓國特許廳推動「技術公開網路服務」,公開技術達到防禦性功能且促進公眾利用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5561&no=64&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
美國國家標準暨技術研究院發布「全球AI安全機構合作策略願景目標」,期能推動全球AI安全合作

美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)於2024年5月21日提出「全球AI安全機構合作策略願景目標」(The United States Artificial Intelligence Safety Institute: Vision, Mission, and Strategic Goals,下稱本策略願景),美國商務部(Department of Commerce)亦於2024年參與AI首爾峰會(AI Seoul Summit)期間對外揭示本策略願景,期能與其他國家攜手打造安全、可靠且可信賴之AI生態系。 由於AI可信賴與否往往取決於安全性,NIST指出當前AI安全所面臨的挑戰包含:一、欠缺對先進AI之標準化衡量指標;二、風險測試、評估、驗證及確效(Test, Evaluation, Validation, and Verification, TEVV)方法不健全;三、欠缺對AI建模後模型架構與模型表現間因果關係的了解;四、產業、公民社會、國內外參與者等在實踐AI安全一事上合作程度極為有限。 為因應上述挑戰並促進AI創新,NIST在本策略願景中擬定以下三大戰略目標:(1)推動AI安全科學發展:為建立安全準則與工具進行技術合作研究,並預先部署TEVV方法,以利評估先進AI模型之潛在風險與應對措施;(2)推展AI安全實務作法:制定並發布不同領域AI風險管理之相關準則與指標,以達到負責任設計、開發、部署與應用AI模型與系統之目的;(3)支持AI安全合作:促進各界採用前述安全準則、工具或指標,並推動全球合作,以發展國際通用的AI安全風險應對機制。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

FCC就電信轉接服務相關法規之適用發布命令

  1990 美國身障礙法要求 FCC 確保在合理的情況下,有聽覺或語言障礙人士都能夠接近使用 電信轉接服務 ( telecommunication relay services , TRS ) 。 TRS 的提供使有聽覺或語言障礙者得以能夠利用電信設施與其他人溝通,而這樣的溝通過程必須是在有受過訓練之通訊輔助人 (communication assistant , CA) 的協助方能夠完成。 CA 會負責交換使用各種不同輔助通訊裝置 ( 例如 TTY 或電腦 ) 者與使用語音電話者間的通訊。為了減少因為通訊轉換所造成的中斷以及為了使該通訊在功能上幾近等同於語音通訊, TRS 相關規定要求 CA 必須等待至少 10 分鐘後,方能將該筆通訊移轉給另一個 CA 。然而,此規則應用於影像轉接服務 (Video Relay Serices) 時,卻引發相關疑義,例如當發話端使用 ASL(American Sign Language ,美國手語 ) 時, VRS CA 可能會因為使用的手語系統的不同而不能夠正確地了解發話端的意思,因此最好的情況時,可以立即將該筆通訊移轉給另外一個 CA 處理。於此情況下, FCC 於 16 日所發布的命令 (Order) 中表示,考量通訊本身的效率性, CA 可以將通訊移轉給另一名 CA 處理,而不必等待至少 10 分鐘後才將該通訊轉出去。

美國科技公司指控六名中國人竊取科技公司營業秘密

  美國司法部起訴六名中國大陸公民,包含三名大學教授,在美從事商業間諜活動,自兩間科技公司竊取有關行動通訊技術的敏感資料,並已經提供中國大陸的大學及企業預備產製。如果罪名成立,最多可判刑15年。被竊取營業秘密包括載有薄膜體聲波共振器(FBAR)的原始碼、規格、配方等文件,主要應用在行動通訊,如平版、智慧型手機、GPS設備等消費性產品及軍事、國防通訊技術,其作用在於過濾無線訊號,改善通訊品質。   據報導,其中兩名被告張浩與龐慰為天津大學的教授,在美國南加州的一所大學攻讀電子工程學博士學位相識,期間獲得國防高等研究計劃署 (DARPA)提供的研究經費,研究FBAR技術。2005年取得學位後,分別進入Avago Technologies與Skyworks Solutions科技公司擔任FBAR工程師,並竊取分別屬於二公司的營業秘密。2006至2007年間,更開始接觸中國大陸的大學,尋找生產FBAR技術的可能性,最終得到天津大學支援,在中國大陸建立FBAR技術中心,更在2009年分別自二科技公司離職,擔任天津大學的全職教授,同時合資成立ROFS精密儀器公司,計畫生產FBAR產品,並已和企業和軍方簽訂契約。   美國政府表示,外國機構利用在美國活動的個人從事商業間諜活動,竊取美國企業投入高額成本開發的技術資料,將造成美國企業的重大損失,削弱市場競爭力,最終損害美國在全球經濟的利益,故將持續調查、蒐集不法證據,以打擊商業間諜活動與制止竊取營業秘密為首要任務。

TOP