歐盟監察官日前指出,ISP業者的流量管理可能違反資料保護及隱私法

  歐盟資料隱私保護監督官(European Data Protection Supervisor, EDPS)Peter Hustinx呼籲歐盟,儘速建立專家小組,制定指導原則,將資料保護以及隱私原則納入網路中立原則中(Network Neutrality)。

  網路中立原則原係要求對於網路服務提供者之間不應有所歧視,應平等對待所有資料。但是,在符合歐盟法規下,ISP業者亦得針對網路內容提供者或終端使用者,以不同收費方式管制網路流量。判斷的準據,則以使用者在網路上傳遞的個人訊息為主。調查官Hustinx在其意見書中指出,調查使用者傳遞的訊息可能會背離歐盟資料與隱私保護相關法律。

  根據歐盟的隱私及電子通訊指令(Privacy and Electronic Communication Directive),ISP業者在某些條件下,得以促進通訊傳輸為目的,處理個人資料,但是必須取得使用人同意。這項指令亦要求ISP業者必須採取適當的技術、組織措施以確保資料的安全。承此,Hustinx就網路中立性所提出的意見,即為前述指令之例外,亦即ISP業者在確保網路順暢及監督是否有干擾時,其監控行為無須使用者同意。但若為限制某些服務,例如檔案交換,而進行的監控行為,則不在此限。再者,該同意必須免費的、明確的並且使用者得了解的。Hustinx提出的指導原則強調確保網路使用者被適當的告知,進而了解該項個人資料監控的意義而做出同意與否的決定。同時,ISP業者在進行調查時,亦應謹慎為之,不違反比例性原則。

相關連結
相關附件
※ 歐盟監察官日前指出,ISP業者的流量管理可能違反資料保護及隱私法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5563&no=64&tp=1 (最後瀏覽日:2026/02/13)
引註此篇文章
你可能還會想看
日本將數位廣告業者列入特定數位平台之透明性及公正性提升法適用對象

  日本於2022年7月5日閣議決定修正政令將數位廣告(デジタル広告)的大型數位平台(デジタルプラットフォーム)業者列入「特定數位平台之透明性及公正性提升法」(特定デジタルプラットフォームの透明性及び公正性の向上に関する法律)適用對象,修正政令於2022年7月8日正式公布,並預計自2022年8月1日開始施行。   日本於2020年5月27日通過特定數位平台之透明性及公正性提升法(以下簡稱本法),要求特定數位平台業者公開提供服務條件,主動積極採取因應措施並進行自我評估,以提升特定數位平台透明性與公正性,促進國民經濟健全發展。隨著數位平台重要度與日俱增,數位廣告的數位平台企業影響力亦逐漸擴大,甚至將對媒體事業收益結構帶來重大改變。日本於2021年6月18日閣議決定「2021經濟財政營運及改革基本方針」(経済財政運営と改革の基本方針2021)與「成長戰略實行計畫」(成長戦略実行計画),均提出須關注數位市場競爭環境,因應新時代統整數位廣告市場規則,將數位廣告的大型數位平台業者列入本法適用對象,整合數位平台透明性與公平性規則。   本次修正政令列入本法適用對象的數位廣告業者包含:一、日本國內營業額在1000億日圓以上的媒體整合型廣告數位平台。二、日本國內營業額在500億日圓以上的廣告仲介型數位平台。日本期望能藉由統整數位廣告市場規則,解決數位廣告市場的垂直整合問題,同時強化消費者隱私保護。

2014年3月24日歐盟執委會提出有機產品行動計畫

  2014年3月24日歐盟執委會提出一項具體行動計畫,發起歐洲政策有關有機農業的檢討諮詢,希冀幫助有機農民、生產者和零售商適應新的政策,投入有機農業技術研發,並規劃於2015年召開食品業與研發人員溝通會議,進而加入專家意見、利益相關者與地區公眾共同集徵意見。其中,為了幫助有機農民、生產者和零售商調整至所建議的政策規劃方向,歐洲執委會將計畫推動一項有機生產行動計劃,以推動農村發展和歐盟農業政策措施,鼓勵有機農業以加強歐盟有機生產與研究創新項目之間的聯繫,並鼓勵使用有機食品。具體行動計畫重點為: 一、增加歐盟有機生產者的競爭力: 二、為鞏固消費者信任度,計畫執行將對有機產品及其農業技術研發展開控管措施; 三、加強歐盟統一有機產品的標示規格。   另外,歐盟執委會亦通過有機產品生產和標籤規範修法草案(The Legislative Proposals for a New Regulation on Organic Production and Labelling of Organic Products),將擬制定更完善的有機產品法規,以杜絕假冒及混充。

日本「個人編號(マイナンバー)」制度遭受違憲的質疑

  日本政府基於(1)行政的效率化(2)提升國民便利性及(3)實現公平、公正的社會等目的,於2015年10月以後開始分發記載國民姓名、住址、性別、個人編號等相關資訊的「通知卡(通知カード)」,日本民眾藉著通知卡至各地相關單位申辦正式「個人編號卡(マイナンバーカード)」,並於2016年01月正式開始實行。   然而此項制度在施行之初即爭議不斷,住在東京、大阪等地的156名居民於2015年12月01日向東京、仙台、新潟、金澤、大阪共五個地方法院提起民事訴訟,請求日本政府停止蒐集、利用並且刪除個人編號,同時要求給予每人十萬日圓的損害賠償。原告訴狀以日本年金機構受到網路攻擊而有125萬件個人資料流出為例,認為現今關於個人編號制度的行政機關及民間企業的安全防護對策並不充分,主張有極高洩漏「關於稅務及社會福利個人資料的危險性」,同時主張個人編號制度並未取得本人同意即蒐集個人資訊,侵害憲法第13條保障的「控制自我資訊的權利」,亦即隱私權及人格權。   2003年開始正式啟動的 「住民基本台帳網路系統(住民基本台帳ネットワーク)」先前也被提起類似訴訟,惟最高法院認定「制度或系統尚未不備、並沒有侵害隱私權」而認定合憲。本案原告律師團則認為住民基本台帳網路系統僅有行政機關接觸到個人資料,而個人編號制度則連民間企業都能接觸到個人資料,因此原告律師團的水永誠二律師即表示:「個人編號制度和住民基本台帳網路系統相比規模更大。就算住民基本台帳網路系統被認定合憲,也不構成個人編號制度合憲的理由。」   儘管本件訴訟的勝訴效力僅及於當事人,不會立刻決定個人編號制度存廢。惟若能動搖該制度適用於所有擁有住民票的人的前提,則日本政府將被迫重新檢討個人編號制度,本訴訟的後續發展值得繼續觀察。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP