歐盟執行委員會(European Commission)於2011年10月28日公佈兩份針對歐盟基因改造作物(Genetically Modified Organisms, GMOs)之評估報告,這兩份報告係由執委會委託兩個獨立顧問機構所完成,評估時間自2009年至2011年。第一份報告係針對GMOs食品與飼料規範(EU's legislative framework in the field of GM food and feed)之評估報告;第二份報告係針對GMOs耕作規範(legislative framework in the area of GMOs cultivation)之評估報告。此兩份報告之重要性在於,其收集來自官方及民間對於GMOs法制之事實陳述與意見,如健康與環境的保護、國內市場的產物規範等議題,可作為未來改善歐盟GMOs法制的基礎。
評估指出,歐盟的GMOs法制就健康與環境保護之規範並無偏誤;但在效率及透明度上,尚有改善之空間。此外越來越多含有基因改造的農作物輸入歐盟造成健康及環境之威脅,而須進一步改善風險評估之作法以及調整相關法制。
在過去一年中,執委會已採納報告中之部分建議,著手針對現存法制作出微調及改善,包括:
1.在GMOs耕作上需要更多的彈性。
2.低度殘留(Low Level Presence, LLP)的解決方案。
3.收集關於GMOs耕作的社會經濟層面之技術資訊。
4.新作物播種技術之評估。
5.監控活動的加強。
6.針對成員國批准風險評估的指導方針(Guideline)法制化之檢討與改革。
7.對於GMOs重要議題的溝通活動之改善。
除上述之改善工作持續進行,在接下來幾週,執委會將針對農產品輸入許可制度提出改善方案,以建立更嚴謹的許可要求。由這兩份報告的公佈,可以預見未來歐盟將持續完善現存法制,而此兩份評估報告將如何影響歐盟的GMOs規範,值得持續觀察。
本文為「經濟部產業技術司科技專案成果」
2024年德國預計制訂或修正多部法規,以達成2023年8月公布的德國資料戰略《透過資料利用取得進展》(Fortschritt durch Datennutzung)文件中所設定的目標。該戰略由內政部、經濟與氣候行動部、數位與交通部聯合訂定,規劃德國資料政策與法規的工作進程,以期打破資料封閉的現狀、拓展資料應用的範圍。 德國資料戰略目標與重點摘要如下: 1.更多的資料: (1)公部門資料:藉由統整跨部門的資料增加資料的可近用性,並透過新訂法規提升資料近用機會,包括《交通資料法》(Mobilitätsdatengesetz)確保交通資料的品質和使用規則、《聯邦透明度法》(Bundestransparenzgesetz)作為取得政府資料的法源依據、《研究資料法》(Forschungsdatengesetz)簡化科研資料的取得,以及為增加健康資料二次利用起草的《健康資料利用法》。 (2)私部門資料:德國政府將訂定並提供資料共享之契約範本,以降低資料的交易、操作成本,並評估增修公平競爭相關法規來協助企業間的資料合作。另將新訂《員工資料保護法》(Beschäftigtendatenschutzgesetz),重整散於歐洲人權法院及德國國內與員工資料相關之規範。 2.更好的資料:德國將積極參與國際資料標準訂定與遵循,確保資料的品質、互操作性,以及標準化的資料描述。相關工作包括草擬關於業者使用cookie等數位追蹤技術如何取得使用者同意的管理規範,並將依歐盟準則評估是否訂定不法重新識別之刑責;另外預計建立文化、農業等主題資料室用以協助政府決策。 3. 資料利用和資料文化:為使資料可持續地利用與發展,政府機關方面將設置資料專責人員,並在以政府資料訓練大型語言模型技術時由新設的資料諮詢中心協助。公民數位能力方面,將於STEM 2.0教育計畫中規劃培育資料概念,促進未來社會發展出更多樣的資料應用機會。 德國資料戰略涉及政府、企業、研究單位和公民各層面,顯示資料的重要性逐漸成為德國重大的課題,亦是我國在建立資料治理時如何確保資料品質、交換義務與使用規則的參考方向。
美國專利多方複審程序與領證後複審程序之概述 歐盟執委會提出資料治理與資料政策歐盟執委會提出資料治理與資料政策 資訊工業策進會科技法律研究所 2020年10月12日 歐盟執委會(European Commission,以下簡稱執委會)於2020年7月提出「資料治理與資料政策」(Data Governance and Data Policies at the European Commission)[1],旨在說明歐盟執委會將如何透過資料治理及相關政策,轉型為資料驅動型組織(data-driven organization),並提供一致的方向或原則,促進執委會下各政務總署(Directorate-General)及事務部門(Service Department)(以下簡稱相關部門機構)之資料共享。 壹、背景目的 「促成歐洲適應數位時代,並使執委會成為完全數位化、具敏捷性、靈活性與透明性的歐盟組織」是執委會現任主席Ursula von der Leyen所提出的2019年至2024年政策願景之一[2]。隨著數位化發展,透明(transparent)、循證式(evidence-based)的決策需運用人工智慧資料分析技術,「資料」是直接影響人工智慧運用於政策決定的關鍵要素。欲提升人工智慧運用結果被信賴的程度,首先必須有可查找(findable)、可近用(accessible)、可互通(interoperable)、安全(secure)且高品質(high-quality)的資料。歐盟機構內部資料、資訊與知識的共享與治理,有助於此願景之達成。 因此,執委會提出「資料治理與資料政策」,建立執委會統一的資料治理架構與政策原則,幫助執委會轄下相關部門機構共同遵循資料管理(data management)、資料近用、資料保護、智慧財產權、資訊安全等相關法律與監理要求。同時,執委會亦期能藉此優化資料建立(creation)、蒐集(collection)、取得(acquisition)、存取(access)、利用(use)、處理(processing)、共享(sharing)、保存(preservation)與刪除(deletion)等資料生命週期必經流程,改善資料品質,提升資料管理及共享之效率。 貳、內容摘要 「資料治理與資料政策」的適用範圍為執委會及其相關部門機構所擁有、利用或再利用的資料集,包括政策決定所使用的資料、行政資料與個人資料。在「資料治理與資料政策」的執行上,則導入「遵守或解釋」(comply-or-explain)原則,除非法律明示規定為選擇性適用,否則執委會轄下相關部門機構皆需遵守;倘未遵守,則需就無法遵守的原因提出解釋。以下分別就「資料治理」與「資料政策」兩大部分重點說明。 一、資料治理 主要目的在建構執委會統一的資料治理架構,釐清相關角色的責任與相互依賴關係。依角色與任務的不同,執委會將資料治理分為三層級,並由秘書總署集體治理團隊(Secretariat-General corporate governance team)支援三層級的執行工作。 (一)策略層級(strategic level) 由資訊管理指導委員會(Information Management Steering Board, IMSB),處理資料治理與資料政策相關議題,界定長期推動願景、提供政策方向、監督推動與執行之進程,並作出策略決定。 (二)管理階層(managerial level) 由資料議題相關的組織、委員會、團體所組成之資料協調小組(data coordination groups)、各地區資料聯絡窗口(local data correspondent)、執委會各相關部門機構下的資料治理委員會(data governance board),以及策略層級就各資料集所指定之資料擁有者(data owner),依策略層級所提出之願景與政策方向,在各處建立並執行資料政策、監督執行進度,並向策略層級報告執行進度及任何超出其決策權限之問題。 (三)運作階層(operational level) 由資料擁有者選出或指派資料管理員(data steward),並與資料利用者(data user)實際執行資料政策,必要時將相關議題提到管理層級解決。 二、資料政策 就資料管理(data management)、資料互通性與標準(data interoperability and standards)、資料品質(data quality)、資料保護與資訊安全(data protection and information security)等核心面向,建立上位原則。 其中關於「資料管理」部分,又依資料生命週期細分。例如在「資料集建立、蒐集或取得」方面採取一次性原則,故執委會轄下相關部門機構在建立、蒐集或取得資料之前,需探詢必要資料或資訊是否已存在,避免重複取得。主要需求資料集的部門機構,應協助讓其他執委會相關部門機構或歐盟機構也獲得使用該資料集之權利。又例如「資料集存取、使用與共享」方面,除非歐盟相關的執委會決定、指令或規則另有規定[3],否則以「需要共享」(need to share)或「預設共享」(share by default)為原則,並使用一致化的資料管理與視覺化工具或資料平台。 針對「資料互通性與標準」與「資料品質」兩部分,著重在執委會內部的共通一致性,包括資料格式、資料相關詞彙、資料品質的定義與量測等。而在「資料保護與資訊安全」方面,則強調「歐盟機關個人資料保護規則」[4]相關義務,以及歐盟資料保護監督機關(European Data Protection Supervisor, EDPS)所提相關指引之遵循。 參、簡析 觀察歐盟執委會的「資料治理與資料政策」,可知其資料治理架構與相關政策,是以形成一個資料共享再利用生態系為藍圖。除了強調資料一次性建立及資料預設共享等原則,更從組織管理角度,界定不同單位或角色的任務與責任,並凸顯資料治理管理組織的建構,對資料政策執行之重要性。 我國政府長期致力於數位國家之發展,在政府資料開放政策推動上已有不少成果,例如建立政府資料開放平台、訂定各級機關資料開放作業原則、統一資料開放格式等。為持續厚植數位國家的資料應用能量,建議未來可進一步完善政府資料治理構面,兼納「政府對民眾之資料開放」及「公務機關間之資料共享」等面向,借鏡歐盟執委會之作法,確立資料共享再利用之管理架構及原則,提升政府資料應用的效率與效能。 [1] EUROPEAN COMMISSION, Data Governance and Data Policies at the European Commission (2020), https://ec.europa.eu/info/sites/info/files/summary-data-governance-data-policies_en.pdf (last visited Oct. 5, 2020). [2] See Ursula von der Leyen, My Agenda for Europe: Political Guidelines for the Next European Commission 2019-2024 (2019), https://ec.europa.eu/commission/sites/beta-political/files/political-guidelines-next-commission_en.pdf (last visited Oct. 8, 2020). [3] 例如歐盟執委會決定Commission Decision 2011/833/EU、歐盟規則Regulation (EC) No 1049/2001及歐盟指令Directive (EU) 2019/1024等,有關近用歐盟資料之例外規定。 [4] Regulation on the Protection of Natural Persons with regard to the Processing of Personal Data by the Union Institutions, Bodies, Offices and Agencies and On the Free Movement of Such Data, and Repealing Regulation (EC) No 45/2001 and Decision No 1247/2002/EC, Council Regulation 2018/1725, 2018 O.J. (L295) 39.
英國民航局發布航空AI監管策略三文件,以因應AI於航空領域之挑戰與機會英國民用航空局(United Kingdom Civil Aviation Authority, CAA)於2024年12月3日發布「CAA對新興AI驅動自動化的回應」(The CAA's Response to Emerging AI-Enabled Automation)、「航空人工智慧與先進自動化監管策略」(Part A:Strategy for Regulating AI and Advanced Automation in Aerospace)以及「CAA 應用AI策略」(Part B: Strategy for Using AI in the CAA)等三份文件。首先,前者概述CAA對於AI應用於航空領域之總體立場,強調以確保安全、安保、消費者保護及環境永續等前提下,促進AI技術在相關航空領域之創新與應用;其次,「航空人工智慧與先進自動化監管策略」著重說明如何於航空領域監管AI技術之使用,以兼顧推動創新並維持安全性及穩健性;最後,「CAA 應用AI策略」則聚焦於CAA內部使用AI技術提升監管效率與決策能力的策略。 由於AI正迅速成為航空產業之重要技術,其應用範圍包含航空器、機場、地面基礎設施、空域、航太、消費者服務等,具有提高航空安全性、運作效率、環境永續性與消費者體驗之潛力。然而,相關技術風險與監管挑戰亦伴隨而至,仍需新的監管框架應對潛在風險。因此,總體而言CAA以推動AI創新技術、提升航空產業效率與永續性為目標,透過了解技術前景、建立AI通用語言,並以航空領域之五大原則為監管框架之制定核心,建立靈活的AI監管體系,維持最高水準的安全保障。五大原則及案例分述如下: (1) 安全、安保與穩健性(Safety, Security and Robustness),例如:使用AI分析航空器感測器資料進行預測維護,以利提早發現問題。 (2) 透明與可解釋性(Transparency and Explainability),例如:清楚記錄AI系統如何提出空中交通路線建議。 (3) 可質疑性與矯正機制(Contestability and Redress),例如:制定一套明確的流程,以便航空公司查詢並了解AI生成的安全建議。 (4) 公平與偏見(Fairness and Bias),例如:確保自動化旅客篩查安檢系統公平對待所有旅客。 (5) 問責與治理(Accountability and Governance),例如:明確界定AI系統在機場運營中的監管角色與職責。 .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}