隸屬於聯合國之下的潔淨能源部長會議(Clean Energy Ministerial, CEM)於2012年4月25-26日於英國倫敦舉行第三次會議,共有來自23國家的代表以及私人代表參與,針對潔淨能源的議題予以討論,探討如何加強各國政府間的合作,以推動公部門與私人對於潔淨能源發展的參與。此一會議中承諾支持由聯合國秘書長倡議的「全面永續能源(Sustainable Energy for All, SE4ALL)」所設定的2030永續能源目標,承諾改善能源效率、提升再生能源、及確保能源利用。相關內容包括: 1.提高能源效率 有16位參與CEM的政府代表亦參與「超高效的設備和器具部署計畫(Super-efficient Equipment and Appliance Deployment , SEAD)」,承諾將推動能源效率,以幫助消費者和企業獲得節能器具和設備。此一努力將能使消費者在未來二十年節省超過一兆美元,並且估計自2012年至2030年能減少110億公噸的二氧化碳排放。具體措施包括推出全球效率獎章的競賽(Global Efficiency Medal competition)、藉由公私合作來推廣高效能產品、加速照明設備在全球市場的轉型、建立全球通用的產品識別系統等。 2. 促進再生能源及其他低碳能源的發展 例如英國宣布投入六千萬英鎊的資金於碳捕獲(carbon capture)與儲能技術的發展。此外,丹麥,德國和西班牙發布了一個全球性的再生資源地圖,標示世界各地的太陽能和風能能源的潛力,並基於能源價格、財務成本及獎勵計劃,來評估不同國家對這些資源開發的成本效益。 3.確保能源的利用 例如義大利和美國宣布發展印度的照明計畫,將在2015年底提供200萬人現代照明服務。又,在非洲照明方案,已經提供250萬人民離網照明裝置(off-grid lighting devices)。這些計畫均附屬於「全球照明和能源利用合作組織(Global Lighting and Energy Access Partnership, Global LEAP)」,該組織宣布將對於缺乏現代能源選擇的消費者,推動低成本且確保品質的解決方案。 4. 更多跨領域舉措 包括有11個國家同意支持由澳洲和美國為首的聯合國能源計畫;氣候工作基金會(ClimateWorks Foundation)提供三年1百萬美元的技術諮詢報告於「潔淨能源解決方案中心(Clean Energy Solutions Center)」;美國與麻省理工學院(Massachusetts Institute of Technology, MIT)合作的潔淨能源計畫(Clean Energy program)中「教育與授權參與(Clean Energy Education & Empowerment Initiative, C3E)」的部分,由20多名專業婦女同胞擔任「潔淨能源大使(C3E Ambassadors)」,獎勵其在潔淨能源領域的成就等。
國際能源總署發布2022年再生能源報告,分析全球再生能源發展現況並預估未來趨勢國際能源總署(International Energy Agency, IEA)於2022年12月6日發布2022年再生能源報告(Renewable 2022),其整理和分析各國之再生能源政策和市場發展現況,並預測再生能源於2022至2027年間在電力、交通和供熱的部署情況,同時提出相關產業在發展上的主要障礙。報告重點如下: (1)能源危機加速再生能源成長 烏俄戰爭所導致之能源危機,迫使各國加速其推動再生能源之政策,例:中國的十四五年規劃、歐盟的REPowerEU計畫,以及美國的降低通膨法案(Inflation Reduction Act)等等,將使2022至2027年間全球的再生能源裝置容量提升約2400GW,等同於中國目前電力的總量,其中歐盟、中國、美國和印度在未來五年間所建置之再生能源,將是過往五年的兩倍;而未來五年間全球成長之電力裝置容量中,再生能源的部分將占90%以上,並且,其總裝置容量將於2025年超越燃煤,成為最大宗的電力來源,其中,又將以太陽光電和風電為主要的發電方式。 (2)各國再生能源法制政策仍有進步空間 國家再生能源法制的不確定性、經濟措施不足、許可程序繁冗,以及電網設施的缺乏,都將阻礙再生能源的發展,若能消除該些障礙,包含簡化許可程序、改善競標方式及提升誘因機制,全球再生能源的成長速率將能再提升25%。 (3)再生能源轉換為氫氣之應用將大幅提升 隨著超過25個國家的氫能政策,全球用於電解產氫的風電和太陽光電裝置容量於2022至2027年間將達50GW,提升近100倍,而主要發展之國家為中國,其次則是澳洲、智利和美國。 (4)生質能的需求持續增加並需開發更多元的原料來源 國際對於生質能的需求將持續增加,在未來五年裡預計成長22%。其中,廢棄物和殘渣的利用是生質燃料重要的一環,至2027年時將有約三分之一的生質燃料來自該兩者,而在燃料需求擴增並造成供應壓力的情況下,則有待政策的推動和技術的研發,以開發更多元且永續的生質能原料。 (5)再生能源供熱的發展程度仍無法取代化石燃料 由於越來越多的供熱來源是依賴電力,而電力中再生能源的比例亦不斷提升,因此,2022至2027年間的再生能源供熱將會提升三分之一,而亦有部份原因是來自政策的推動,尤其是遭遇天然氣危機的歐盟。不過,依目前再生能源供熱技術的發展程度,還無法追上傳統化石燃料所能供熱的數量。
日本特許法有關職務發明報酬規定之新近發展趨勢企業或機構對於所屬研發人員所為的 職務發明 , 應該給予多少的報償才算「合理」,近年來成為日本專利制度的爭議話題之一,其中 Olympus Optical Co., Ltd. v. Shumpei Tanaka 、 Yonezawa v. Hitachi Co. Ltd. 、 Nakamura v. Nichia Chemical Co Ltd 幾件訴訟案件更受到高度矚目,引發各界對於日本特許法(即專利法)中第 35 條第 3 、 4 項相關規定之檢討與議論,進而促使日本國會於 2004 年 5 月 28 日 通過特許法修正案,並自 2005 年 4 月 1 日 正式生效。 修正後之日本特許法有關受雇人發明制度部分,修正了第 35 條第 3 項及第 4 項並新增第 5 項。第 35 條第 3 項規定,受雇人依據契約、工作規則或其他約定,同意授予雇用人關於受雇人所為發明之專利申請權、專利權或設定專用實施權時,受雇人對於雇用人有收取合理報酬之權。第 35 條第 4 項規定,依據前項所定之契約、工作規則與其他約定,訂有報酬之約定時,在該報酬之決定標準係經由受雇人與雇用人協議為之,該報酬標準係經公開,且受雇人對於計算報酬金額所表達之意見,亦被充分聽取的情形下,依據該約定所為之報酬金給付應被認為是合理的。又同條第 5 項之規定,若企業內部之契約、工作規則與其他約定,並未規定報酬金額,或雖有規定,但該規定之報酬金額被認為是不合理的,則第 3 項所規定之合理報酬金額,應權衡雇用人基於該發明所獲得之利益、所承受之負擔及對該發明所做之貢獻,與受雇人在相關發明中所獲得之利益及其他相關因素加以認定之。 上述修正規定最大的特色在於 :(一)尊重自主協議 ; (二)報酬計算要件更加具體化 ; (三)鼓勵裁判外紛爭解決手段 。新修正之受雇人制度會帶來什麼樣的影響,目前各界仍在觀察;不過可確定的是,相較於舊法,新法至少在計算合理報酬上,要求雇用人須踐行更多的程序及其他要件,而這程序或要件規定將可減少法官在舊法時計算合理報酬金額的沈重負擔,與高度不確定所帶來的風險,並且亦可減少受雇人發明訴訟的總數量。 以日本電子大廠 Toshiba 新近在 7 月底與其離職員工 Fujio Masuoka 就閃光記憶晶片技術( flash memory chip technology )所達成之職務發明報酬和解協議為例, Toshiba 在 7 月 27 日 發布的新聞稿中,即特別感謝東京地方法院對公司有關員工職務發明之報酬政策及看法的尊重。
美國科羅拉多州通過《人工智慧消費者保護法》2024年5月17日,科羅拉多州州長簽署了《人工智慧消費者保護法》(Consumer Protections for Artificial Intelligence Act,Colorado AI Act,下簡稱本法),其內容將增訂於《科羅拉多州修訂法規》(Colorado Revised Statutes,簡稱CRS)第6篇第17部分,是美國第一部廣泛對AI規範的法律,將於2026年2月1日生效。 本法旨在解決「高風險人工智慧系統」的演算法歧視(Algorithmic Discrimination)的問題 ,避免消費者權益因為演算法之偏見而受到歧視。是以,本法將高風險AI系統(High-risk Artificial Intelligence System)定義為「部署後作出關鍵決策(Consequential Decision)或在關鍵決策中起到重要作用的任何AI系統」。 而後,本法藉由要求AI系統開發者(Developers)與部署者(Deployers)遵守「透明度原則」與「禁止歧視原則」,來保護消費者免受演算法歧視。規定如下: (一)系統透明度: 1.開發者應向部署者或其他開發者提供該系統訓練所使用的資料、系統限制、預期用途、測試演算法歧視之文件以及其他風險評估文件。 2.部署者應向消費者揭露高風險人工智慧系統的預期用途,也應在高風險人工智慧系統做出決策之前向消費者提供聲明,聲明內容應該包含部署者之聯絡方式、該系統的基本介紹、部署者如何管理該系統可預見之風險等資訊。 (二)禁止歧視: 1.開發者應實施降低演算法歧視之措施,並應協助部署者理解高風險人工智慧系統。此外,開發者也應該持續測試與分析高風險人工智慧系統可能產生之演算法歧視風險。若開發者有意修改該系統,應將更新後的系統資訊更新於開發者網站,並須同步提供給部署者。 2.部署者應該實施風險管理計畫,該風險管理計畫應包含部署者用於識別、紀錄降低演算法歧視風險之措施與負責人員,且風險管理計畫應定期更新。在制定風險管理計畫時,必須參考美國商務部國家標準暨技術研究院(National Institute of Standards and Technology, NIST)的《人工智慧風險管理框架》(AI Risk Management Framework, AI RMF 2.0)與ISO/IEC 42001等風險管理文件。 美國普遍認為科羅拉多州的《人工智慧消費者保護法》為目前針對人工智慧系統最全面之監管法規,可作為其他州有關人工智慧法規的立法參考,美國各州立法情況與作法值得持續關注。