自2005年7月黑莓機的通訊服務-BlackBerry Messenger已成為廣受歡迎的社群網路服務;2010年黑莓機製造商RIM(Research in Motion) 正式使用縮寫BBM代表黑莓機的社群網路功能服務(BlackBerry Messenger),被加拿大廣播收視/聽率調查公司(BBM Canada)提出商標侵權訴訟。
BBM Canada成立於1944年,原名為Bureau of Broadcast Measurement,2001年更名為BBM Canada,自1944年起即使用BBM名稱代表其公司所提供的廣播訊息服務,至今已超過60年。並於2007年取得加拿大註冊商標,指定使用於相關測量服務;BBM Canada並於申請時註明,BBM最早使用於加拿大的日期為2005年3月31日。
RIM於2009年申請加拿大商標註冊-BBM(申請號:1455487),指定使用於通訊服務及電腦軟體等產品及服務,至今仍為調查程序階段。此外,RIM先前亦使用BBX為操作系統系列商標名稱,被美國聯邦法院- US federal court in Albuquerque 宣告臨時禁制令。 RIM日前主張,BBM的商標申請尚未被加拿大智慧局(CIPO-Canadian Intellectual Property Office)駁回,且RIM與BBM Canada兩家公司間並無任何競爭關係,而雙方所提供的服務亦無重疊,故依據加拿大商標法,雙方應可同時併存及使用BBM為表彰兩家的產品及服務上。
為加強兒少網路安全,英國通訊局(Office of Communication)於2025年4月24日發布「兒少風險評估指導原則」(Children's Risk Assessment Guidance)以及「兒少保護行為準則」(Protection of Children Codes of Practice),以供受規範之網路服務提供者遵循。 「兒少風險評估指導原則」要求所有受《網路安全法》(Online Safety Act 2023)規範的「使用者對使用者服務」(user-to-user service)和「搜尋服務」(search service)的服務提供者,在完成兒少存取評估(children’s access assessments)確認服務有可能被兒少存取後,必須在三個月內即2025年7月24日前,完成兒少風險評估(children’s risk assessments)。 至於「兒少保護行為準則」一經國會審議通過,則自2025年7月25日起生效,服務提供者必須採取「兒少保護行為準則」規定的安全措施(safety measures),或實施其他有效手段,以減少上開風險發生的可能性。 「兒少保護行為準則」列出的安全措施包括: 一、更安全的資訊發送: 有運作推薦系統(recommender system)且存在中度或高度有害內容風險的服務提供者,應調整其演算法,確保不向兒少推播有害內容。 二、有效的年齡驗證: 風險最高的服務提供者必須使用高度有效的年齡驗證,以識別使用者是否為兒少。 三、有效的內容審查: 服務提供者應建立內容審查機制,一旦發現有害兒少的內容時,能迅速採取行動。 四、更多的選擇與支援: 服務提供者應賦予兒少更多的控制權,包括允許對內容或貼文表達不喜歡、接受或拒絕群組聊天邀請、封鎖用戶、將用戶設為靜音、以及關閉自己貼文的留言功能等。 五、簡便的舉報與申訴: 服務提供者應提供透明的舉報與申訴管道,且確保提出舉報和申訴的管道和方式對兒少而言相對輕鬆且簡單。 六、強化的治理: 服務提供者應設置負責兒童安全的專責人員,高層團隊並應每年審查兒童風險管理情況。 如服務提供者未能履行上開義務,英國通訊局可處以罰款。必要時,甚至可向法院聲請禁制令封鎖該平台。 處在網路無限擴張的時代,保障兒少網路安全絕對是重要且不容忽視的課題。英國通訊管理局發布的實施作法,非常值得我國觀察學習與參考。
美國商務部、財政部以及司法部發布遵循美國出口管制與制裁規範聯合指引美國商務部(Department of Commerce)、財政部(Department of Treasury)以及司法部(Department of Justice)於2024年3月6日發布出口管制與制裁法令遵循指引,以避免邪惡政權(malign regimes)與其他不法人士試圖濫用商業與金融管道,取得有危害美國國家安全與外交政策利益、全球和平與繁榮風險的貨品、技術以及服務,特別提供「非美國公司」(non-U.S. companies),降低相關風險的遵循指引。 該指引分享3則違反制裁法規的案例,重點如下: (1)某家總部位於澳洲的國際貨運代理和物流公司,運送貨品至北韓、伊朗以及敘利亞(皆為被制裁之目的地),且透過美國金融系統發起或收受交易款項,導致美國金融機構與被制裁之對象交易,並向受制裁的司法管轄區輸出金融服務。該公司最終繳納6,131,855美元罰款。 (2)某阿聯酋公司與杜拜以及伊朗公司共謀,透過在出口文件中將一家杜拜公司錯誤地列為最終使用人,然後從一家美國公司出口「儲槽清洗裝置」(storage tank cleaning units)到伊朗,構成違反出口管制規定行為。後與主管機關達成行政和解,繳納415,695美元罰款。 (3)某家總部位於瑞典的國際金融機構的子公司,因其客戶從被制裁的司法管轄區的IP位址,使用子公司的網路銀行平台,透過美國代理銀行向位於被制裁司法管轄區的交易對象付款,因此繳納3,430,900美元罰款。
日本國土交通省公布最後一哩路自駕車系統指引為促進自駕車研發和推廣,日本國土交通省召集產官學研各界成立先進安全汽車(Advanced Safety Vehicle, ASV)推進檢討會,檢討設計自駕車時之注意事項,並於2020年7月17日公布「最後一哩路自駕車系統基本設計書」(ラストマイル自動運転車両システム基本設計書),希望能藉此達成確保地方交通運輸能量及加速自駕車落地之目標。 「最後一哩路自駕車系統基本設計書」將操作適用範圍(Operational Design Domain, ODD)定義為限定區域或駕駛環境條件,並提出所有自駕車應具備之共通ODD,包括(1)道路/地理條件︰目標道路、行駛道路;(2)環境條件︰時間、天氣;(3)行駛條件︰行駛速度;(4)行駛空間︰可支援自駕車行駛之基礎設施,以及可提醒用路人注意正在進行自駕車實驗之設施。此外,由於不同應用情境會影響ODD之設定,故本書以限定路線下往返之自駕車為代表,說明在個案中該如何進一步檢討ODD。以行駛速度為例,在共通ODD中,最後一哩路自駕車時速應為30公里,但在提供限定路線內往返之載客服務時,自駕車的時速應設定在12公里以下。最後,「最後一哩路自駕車系統基本設計書」內整理最後一哩路自駕車共通及特有之技術要件,以及設計時應留意和確認的問題。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。