SOPA法案,全名「禁止網路盜版法案(The Stop Online Privacy Act)」,是於2011年10月26日由美國眾議員Lamar Smith所提出,主要支持團體包括美國「娛樂軟體協會(the Entertainment Software Association)」、網路域名公司GoDaddy.com、「美國動畫協會(the Motion Picture Association of America)」以及「美國商會(United States Chamber of Commerce)」等等。另外一個類似的法案為美國參議院於2011年5月提交的「保護知識產權法案」,簡稱PIPA(Preventing Real Online Threats to Economic Creativity and Theft of Intellectual Property Act),該法案原預訂於2012年1月24日交付表決。
2012年1月18日,為了表明對SOPA的反對立場,美國各網站發起了關站的行動,包括Google、Wikipedia等這些大型網站皆參與了抗議行動(抗議行動的參與網站名單可參考下述網址: http://sopastrike.com/)。美國總統歐巴馬也於今年一月公開表明他不會支持SOPA以及類似的法案,主因為該法案箝制了資訊流的自由發展。白宮於官方部落格表示「保護線上智慧財產權的重要任務不可危害網路的開放以及創新發展」、「任何打擊線上盜版的努力必須避免線上審查對合法活動所造成的風險,並避免阻礙了商業的創新發展」、「我們必須避免創造新的網路安全風險或者是瓦解網路的基礎架構」、「期許並鼓勵所有的私人團體,包括網路內容創作人以及網路平台提供人,共同努力,採取自願性的措施以及最佳作法去減少線上盜版」,但是部落格中的聲明也指出,線上盜版已經是危害美國經濟的一個重要問題,它危害了中產階級的工作,並且危害了具有創造力以及創新力的美國公司以及企業。由於反對的浪潮,SOPA以及PIPA法案於今年1月20日正式地遭到議院擱置。
SOPA的立法主要是用來打擊國外販售仿冒品的網站以及提供非法下載影音軟體系統的網站,俗稱「海盜灣(pirate bay)」,使用人在這些網站只要輸入影集或者是電影名稱就可以免費下載收看。這些海盜灣由於伺服器不在美國境內所以難以管制,但是透過SOPA,美國政府可以藉著管制美國的網路服務者去切斷這些海盜灣在美國提供服務的生路。依照SOPA,Google將被禁止在其搜尋結果中顯示這些海盜灣,PayPal也將被禁止提供資金傳輸服務與這些被認定有侵權事實的業者。
事實上,著作權的侵權行為原本就是非法的,在此之前已有「數位千禧年著作權法案(the 1998 Digital Millennium Copyright Act,簡稱DMCA)」提供執行措施。依照本法,舉例說明,假設歌曲創作人發現有人非法在YouTube上上傳其享有著作權的歌曲,著作權人可以要求YouTube將之下架,這樣的要求稱為「DMCA 投訴公告(DMCA warning)」。光是2011年,Google就收到了約五百萬筆侵權下架的要求,若確定要求為合法,Google一般而言會在六個小時之內將之下架。問題在於DMCA投訴公告對於美國國外的網站並無法發揮其預期的效力。
但是類似YouTube這類的網站經營者則擔心,SOPA可能帶來網站營運者必須負擔審查使用人所上傳的檔案是否有侵權事實義務的負面效應。依照SOPA,任何支付服務或者是廣告營運主都需要提供一個管道供第三人檢舉「偷竊美國財產」的使用人,一遭檢舉,營運主就有義務在五天之內切斷其服務。雖然亂檢舉有刑事責任,但是是否無侵權行為的舉證責任則需要受控告者自行負擔,而許多小網站以及非營利性網站根本無力去負擔龐大的訴訟費用。另外,反對者認為SOPA對於「搜尋引擎(internet search engine)」以及「國外侵權網站(foreign infringing site)」的定義過於廣泛,在本法之下,維基百科也會被定義為「搜尋引擎」,並有義務在任何美國法院的要求下去移除「國外侵權網站」的有關聯結,否則將會被視為助長侵權行為並面臨「藐視法庭罪」,這將造成言論自由箝制的相關問題,除此也會大量增加維基百科的營運成本。業者多表示肯認SOPA的立意並表示願意合作,但是業者表示SOPA過於廣泛模糊的法規文字將可能會流於網站內容的審查並造成無法控制的後果。反對者指出,SOPA的影響範圍無法預測,網站內容若只是部分有侵權疑慮,可能整個網站都無法出現在搜尋引擎的搜尋結果中。「電子前哨基金會(Electronic Frontier Foundation, EFF)」指出,類似Facebook或YouTube這類由使用者自創內容的網站,未來可能都要被迫自行去監管網站內容,將大量增加營運成本。另一方面而言,SOPA賦予業者只要具有合理懷疑就可以封鎖使用者,這將會成為大公司用來打壓潛在競爭者並迴避反托拉斯法的手段。
英國近來透過電子醫療紀錄的應用,以智慧演算法(intelligent algorithms)開發結合數位技術的創新醫療科技,這些成果多是以國民健保署(National Health Service, NHS)的資料做為基礎,因此關於資訊保障等議題也開始受到政府之重視。 2018年9月5日,英國衛生部(Department of Health and Social Care)在NHS健康與護理創新博覽會(NHS Health and Care Innovation Expo Conference 2018)中公布「以資料導向的健康照護科技之行為準則」(Code of Conduct for Data-driven Health and Care Technology)。此準則主要鼓勵研發公司在設計產品時,將患者的資訊安全以及新技術的操作品質列入考量。 此行為準則的目的主要在於改善整體研發環境,內容包含十項原則,分別為:界定使用者、界定價值(value proposition)、對使用的資料保持合理(fair)、透明(transparent)以及當責(accountable)的立場、符合一般資料保護規則(General Data Protection Regulation, GDPR)的資料最小化原則(data minimisation principle)、利用公開之標準、公開被使用的資料以及演算法的極限、在設計中內建合適的安全性設定、界定商業策略、展示技術使用上的有效性、以及公開演算法的類型、開發原因、與操作過程的監控方式。 官方期望接下來能廣納相關人員的建議,以增進此指引在產業運作上的適用性,並預期於2018年12月公布更新的版本。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國聯邦地方法院駁回臨床試驗軟體公司Medidata對競爭對手Veeva的營業秘密訴訟美國紐約南區聯邦地方法院(S.D.N.Y.)於2022年7月15日駁回了臨床試驗軟體公司Medidata Solutions Inc. (以下簡稱Medidata公司)控告競爭對手Veeva Systems Inc. (以下簡稱Veeva公司)竊取其營業秘密的請求。 原告Medidata公司於2017年1月指控被告Veeva公司陸續挖角其數名離職員工,部份員工離職時私自拷貝公司檔案,其中包含原告的產品研發、商業策略等營業秘密,而被告根據這些資訊開發了和原告相似的軟體,造成其重大損害,因此向被告請求4.5億美元的損害賠償。 被告Veeva公司抗辯雖然這些員工離職時私自保留原告的檔案,但原告在訴訟中並未明確說明哪些屬於該公司的營業秘密,亦即未特定營業秘密標的;此外,即便這些離職員工自行保留的檔案中有包含原告所稱之營業秘密,但原告提出的證據不足以證明被告有不當取用(misappropriation)其營業秘密,僅根據被告有僱用原告離職員工等事實,即推論被告有不當取用。原告試圖透過此模糊和毫無根據的主張,限制產業的創新、競爭、人才流動。 本案歷經五年的纏訟,法院最終駁回原告請求。法官指出,原告在整個訴訟過程中並未明確定義哪些資訊屬於營業秘密,原告似乎認為任何資訊皆屬於其營業秘密,這樣的主張無異於代表任何公司永遠無法挖角其他公司的員工,因為這些員工到新公司任職後所說的任何話,都會間接地揭露他們在之前工作中所學習到的事情,因此駁回原告之訴。 從本案可以觀察到,企業應定期盤點公司內部資訊,明確界定營業秘密範圍,並落實管理及妥善留存相關證據,發生侵害營業秘密爭議時才能有效舉證。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
歐盟執委會提案將電子設備之充電連接埠統一為USB Type-C自2009年起,歐盟執委會(European Commission,下稱執委會)開始推動統一化歐盟境內手機及其他類似電子設備之充電器,以減少不必要的電子垃圾,並改善電子設備充電器規格紊亂所造成消費者的不便利。多年來,市面上充電連接埠的規格已從過去的三十多種減少為USB Type-C、USB micro-B以及Lightning三種規格。執委會更於今(2021)年9月23日提出《無線電設備指令》(Radio Equipment Directive, 2014/53/EU)增修條文提案,欲透過立法建立統一的充電解決方案,該提案包括: 1.統一充電連接埠 USB Type-C為所有智慧型手機、平板、相機以及耳機等電子設備的通用充電連接埠,一個USB Type-C充電器將能為各種廠牌的產品充電。 2.統一快速充電技術 防止各製造商無正當理由地限制充電速度,並確保電子設備在使用任何可相容的充電器時都能有相同的充電速度。 3.電子設備及充電器的分拆販售 防止消費者被迫購買不必要的充電器,並減少未使用的充電器數量,進而達成降低電子垃圾之目的。 4.提供消費者更多資訊 製造商應提供消費者其產品之充電性能相關資訊,以利消費者判斷其現有的充電器與該產品是否相容,該資訊亦有助於消費者為該產品選購相容的充電器。 此提案仍需待歐洲議會(European Parliament)及歐盟部長理事會(Council of the European Union)決議,若決議通過,製造商將有24個月的過渡期來調整產品設計。