美國高等法院於2012年1月18日對Golan v. Holder案做出裁定,確認維持將目前在公共領域的外國著作納入著作權保護的聯邦法。Golan v. Holder案之主要爭點為,美國國會於1994年為符合伯恩公約及WTO「與貿易有關智慧財產權協定(TRIPS)」的規定,決議通過讓之前無法在美國取得著作權保護的外國著作可以回溯取得美國著作權,一夕之間近上百萬件於1923年至1989年之間在國外發表的著作在美國不再屬於公共領域,包括了許多經典的電影,名畫及交響樂等,這個法案引起了許多樂團指揮家、表演者、老師、電影檔案保管者及電影發行商等人士的不滿,因為他們將無法像之前一樣無限制的使用這些著作。
美國聯邦地區法院於2009年曾判定認為恢復屬於公共領域的外國著作的著作權違反了保障言論自由的美國憲法增修條文第一條,但高等法院以6:2的多數意見認為,恢復公共領域的外國著作的著作權保護並不違反憲法修文第一條及憲法下的著作權條款。身為著作權擁有者,這個裁定對電影與音樂業者可以說是場勝戰,但對Google建立電子圖書館的計畫則將是個挑戰,Google表示這將使他們無法把近一千五百萬冊書籍的內容公開在網路上提供,並且也會影響到他們已完成電子化的上百萬冊書籍的使用。
日本於2021年7月13日公布〈智慧財產推進計畫2021〉。〈智慧財產推進計畫〉為智慧財產戰略本部自2003年開始,每年持續修訂至今的行動計畫。今年最新公布的〈智慧財產推進計畫2021〉,指出日本企業在智財.無形資產的投資活動相較於其他國家有嚴重停滯之現狀,並提出今後智財戰略的7項重點施政: 促進智財、無形資產的投資及運用:藉由企業揭露自身的經營戰略,吸引投資者關注智財並投資,藉此建立智財交易環境。 推動「運用標準戰略」:數位化使產業結構改變,從傳統金字塔型價值鏈轉為以功能連結的階層模式;此轉變讓標準戰略成為建立市場競爭優勢不可或缺的手段。 建立促進數據活用的環境:例如制定跨領域合作的數據流通基礎方針,或是創建數位交易市場,將數據交易的價值可視化,藉此吸引投資。 建立著作權集中許可制度:為解決數位化所產生的權利處理成本問題,需建立可以快速處理龐大且多樣化的著作權集中許可制度。 強化智財權在初創或中小企業、農業領域的運用:例如提供企業智財布局的諮詢窗口、建立農業技術的商業機密保護制度。 強化支援智財運用的體制、營運和人才基礎:例如商標審查效率強化、實現各級學校智財教育的普及。 重建COOLJAPAN戰略:因應疫情後的社會變化,追加建立數位技術的運用,以確保COOLJAPAN戰略持續發展。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國有限合夥發展於我國之借鏡 麥當勞在歐盟失去其使用「Big Mac」的部分商標權利歐盟普通法院(EU General Court)於2024年6月5日宣告McDonald’s(後稱麥當勞)在與競爭對手愛爾蘭速食品牌Supermac's的訴訟中,失去其「Big Mac」(又稱「大麥克」)之部分商標權,即無法將「Big Mac」商標用於雞肉三明治等家禽類商品與餐廳內用及得來速外帶等餐飲服務上。 此案件起因於Supermac's公司拓展事業版圖進入歐盟市場,將公司品牌名稱「Supermac's」申請註冊歐盟商標,而麥當勞則主張消費者可能與其於1996年取得之「Big Mac」歐盟商標產生混淆誤認。然而,Supermac's於2017年向歐盟智慧財產局(European Union Intellectual Property Office,後稱EUIPO)以「麥當勞未真實使用(genuine use)『Big Mac』商標逾五年」為由,申請廢止麥當勞之「Big Mac」註冊商標。EUIPO於2019年廢止「Big Mac」商標於部分類別的註冊,惟EUIPO仍允許麥當勞仍可將「Big Mac」商標用於雞肉三明治、其他家禽產品及餐廳服務上。 爾後,Supermac's向歐盟普通法院提出上訴,而歐盟普通法院於2024年6月認為,麥當勞未能證明其於連續五年間有將「Big Mac」商標「真實使用」於雞肉三明治、家禽商品或餐廳服務的使用程度(例如:銷售量、商標使用期間長短及使用頻率等),故認定麥當勞不得再將「Big Mac」商標用於雞肉三明治、家禽商品或餐廳、得來速或外帶等服務上,惟本案尚未確定,而可再就法律問題上訴,故仍可持續關注本案的後續發展。 企業可從本案了解到當品牌標識成功註冊為商標後,務必留意各國所規範之連續使用年限(例如若連續五年未使用歐盟商標,則可能有被商標廢止之風險),以及明確留存足以佐證「真實使用」於註冊所指定之類別與品項之使用證明,以維護品牌商標之保護。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。