美國馬里蘭州法案禁止雇主近用(access)其員工及應徵者之社群網站資訊

  日前報導指出,在美國有部分的企業在面試時要求應徵者交出其臉書(Facebook)帳號及密碼,以供企業做為評估是否錄取之參考。企業這樣的舉動,遭論者類比為要求應徵者交出自家大門的鑰匙。據悉,企業此一傾向在九一一後有明顯增加之趨勢。

 

  為因應此一趨勢所帶來的隱私疑慮,馬里蘭州在四月初已立法(撰稿時,此法尚待該州州長簽署)禁止雇主要求瀏覽或進入員工與應徵者的臉書或其他社交網站頁面,當然也包括禁止雇主取得員工或應徵者的臉書或社交網站帳號與密碼,或企圖成為員工及應徵者的「朋友」。

 

  馬里蘭州此一立法,除了在保護員工或求職者的隱私之外,也是為了保障言論自由;且此一看似亦在保護應徵者及員工之法律,其實對企業亦有助益:其使原本處於法律灰色地帶的爭議問題明朗化,因而可使企業瞭解應如何因應,而可避免許多不必要的訴訟。

 

  雖然輿論對此立法有許多贊同之聲,但亦不乏反對此一立法者,例如馬里蘭州的許多商業團體即認為瞭解求職者的社交活動,對於剔除不適任的應徵者,有其必要。

 

  馬里蘭州此一立法乃率全美之先,其他各州可能亦陸續會提出類似法案。

相關連結
※ 美國馬里蘭州法案禁止雇主近用(access)其員工及應徵者之社群網站資訊, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5727&no=64&tp=1 (最後瀏覽日:2025/12/11)
引註此篇文章
你可能還會想看
德國聯邦內閣政府決議通過「電信終端設備連接與自由選擇法草案 (Gesetz zur Auswahl und zum Anschluss von Telekommunikationsendgeräten)」

  為防止網路服務企業,在提供網路服務上替客戶連接寬頻網路(Breitbandanschluss)時,僅准許使用自家公司提供之路由器(Router),進而導致路由器或數據機(Modem)市場之壟斷狀況,違反市場自由競爭,德國聯邦內閣政府於2015年8月12日決議通過德國聯邦經濟暨能源部(Bundesministerium für Wirtschaft und Energie)於2015年2月25日所提出之「電信終端設備連接與自由選擇法草案」(Gesetz zur Auswahl und zum Anschluss von Telekommunikationsendgeräten)。   透過該草案,德國廣播電台與電信發射設施法(Gesetz über Funkanlagen und Telekommunikationsendeeinrichtungen)新增條文,以確保所有的終端設備(Endgeräten)列為市場自由化之對象。透過法定市場自由化的規範亦達成歐盟貨物公開及自由流通(free movement of goods)之原則。   該草案亦修定德國電信法(Telekommunikationsgesetz),「客戶之網際網路接取」現被定義為「被動式網絡終端點(passiver Netzabschlusspunkt)」。亦即,網路的架構設定與規劃,以往通常為電信業者所指定及管理,並包括路由器在其中,然而透過新法之修訂,已將路由器排除在被動式網絡終端點外,反而明確定義為積極終端設備(aktives Endgerät)。電信業者的管轄管理權限,以草案之修訂在路由器端前就會被設限。因此,讓網際網路使用者自己可使用自己裝置的路由器來定義自身的積極連接點(aktives Zugangspunkt)。   然而,網路營運者仍然可以提供其客戶終端設備,像是路由器或網路數據機,但透過該草案,客戶現可擁有終端產品的選擇權,而不致被迫使用被指定之網路終端設備。

美國著作權局拒絕人工智慧創作品之著作權申請

  2022年2月14日,美國著作權局(US Copyright Office)所屬之著作權審查委員會(Copyright Review Board),做出一件人工智慧(AI)創作作品不得申請著作權登記之決定,並聲明人類作者是著作權保護的必要前提。   本案申請人Stephen Thaler在2018年首次嘗試為AI「Creativity Machine」創作的藝術作品申請著作權登記,Stephen將Creativity Machine列為作者,並聲明其因擁有該AI而得透過美國著作權法第201條(b)項的受雇著作原則(work for hire)取得前述作品之所有權,且得為此作品申請著作權登記。然而,Stephen提出的申請沒有成功,著作權局認為依著作權法及相關判例,非出自於人類所作之作品不應受著作權保障,而本案AI之創作作品亦無人類的創意性投入或干預。在Stephen提出兩次複審後,著作權審查委員會在2022年做出機關最終決定,除重申僅人類之作品得受著作權保障以外,更進一步表示無權利能力的AI無法簽訂契約,故無受雇著作原則適用之可能。此外,著作權審查委員會亦指出受雇著作原則亦僅能表彰作品的所有權,並非作品是否得以受著作權保障之指標。   Stephen Thaler長年來不斷為AI之創作品爭取法律保護,除上述著作權外,其亦將名為DABUS的AI列為專利發明人,並以此就DABUS之發明在多個國家申請專利,而澳洲聯邦法院在2021年7月做出全球首個認為AI可作為專利發明人的判決。

新加坡次世代國家寬頻網路由Open Net得標

  新加坡資通訊發展局(Infocomm Development Authority, IDA)於2008年9月26日宣布,新加坡政府計畫投入7.5億新加坡幣資金建置之次世代國家寬頻網路(Next Generation National Broadband Network, NGNBN)由OpenNet公司得標,負責建置及維運次世代國家寬頻網路中靜態基礎設施(passive infrastructure)部分。   新加坡之次世代國家寬頻網路預計在2010年時提供60%家戶光纖網路接取服務,至2012年6月份時,則可提供新加坡95%家戶光纖網路接取服務。就寬頻接取速度而言,初期可提供100Mbps之頻寬,待建置完成後則預估可提供之頻寬達1Gbps。未來,OpenNet公司將可在2年內從新加坡電信(Sing Tel)取得該公司已建置之管道、交換器等基礎設備。   待網路建置完成後,OpenNet公司必須以住宅區光纖接取每月15元新加坡幣,非住宅光纖接取每月50元之價格,無差別地提供批發服務予網路接取服務提供業者,而不得自己提供接取服務予企業及一般家庭用戶。其次,為鼓勵建築所有人接取光纖網路,OpenNet公司在鋪設光纖網路進入建築時,將不收取任何裝置費用。預計自2013年起,在普及服務義務之要求下,OpenNet公司亦將持續負責將光纖網路接取至住宅、辦公大樓或其他建築物。換言之,OpenNet公司預計在2012年完成現有建築之光纖網路佈建,並於2013年起以履行普及服務義務之方式,持續光纖網路之建置工作。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP