日前報導指出,在美國有部分的企業在面試時要求應徵者交出其臉書(Facebook)帳號及密碼,以供企業做為評估是否錄取之參考。企業這樣的舉動,遭論者類比為要求應徵者交出自家大門的鑰匙。據悉,企業此一傾向在九一一後有明顯增加之趨勢。
為因應此一趨勢所帶來的隱私疑慮,馬里蘭州在四月初已立法(撰稿時,此法尚待該州州長簽署)禁止雇主要求瀏覽或進入員工與應徵者的臉書或其他社交網站頁面,當然也包括禁止雇主取得員工或應徵者的臉書或社交網站帳號與密碼,或企圖成為員工及應徵者的「朋友」。
馬里蘭州此一立法,除了在保護員工或求職者的隱私之外,也是為了保障言論自由;且此一看似亦在保護應徵者及員工之法律,其實對企業亦有助益:其使原本處於法律灰色地帶的爭議問題明朗化,因而可使企業瞭解應如何因應,而可避免許多不必要的訴訟。
雖然輿論對此立法有許多贊同之聲,但亦不乏反對此一立法者,例如馬里蘭州的許多商業團體即認為瞭解求職者的社交活動,對於剔除不適任的應徵者,有其必要。
馬里蘭州此一立法乃率全美之先,其他各州可能亦陸續會提出類似法案。
自2012年開始,荷蘭科學研究組織(Netherlands Organisation for Scientific Research, NWO)會擇定幾個重點領域,該重點領域係包含:農業食品,園藝及繁殖材料,水 ( Agri & Food, Horticulture & Propagation Materials, Water)、生物經濟,化學,跨部門的信息和通信技術方案(Biobased Economy, Chemistry, Cross-sector theme ICT)、創意產業(Creative Industry)、能源產業(Energy)、生命科學與健康(Life Sciences and Health)…等等領域,並由其中擇定有發展前景的計畫(top program),以公私夥伴關係推動發展,其每年投注於該重點領域研究金額大約245,000,000歐元,而投注於公私夥伴關係計畫中的金額更高達100,000,000歐元。公部門與產業間以及研究者間權利義務關係依合作強度以及產業投入的資金而有所不同。荷蘭此類公私夥伴關係依發動者不同而分三種不同類型: 1.科學家發動的公私夥伴關係(Science Takes Initiative) 2.共同發動的公私夥伴關係(Joint Initiative) 3.由產界發動之公私夥伴關係(Business Takes Initiative) NWO在評估是否給予補助時,可以採取面談或現場參觀評估之方式,而NWO亦得附帶條件要求補助所購買的特殊儀器設備提供他人使用。而NWO補助所生的研究成果應盡可能公開並有利於未來的研究使用,例外情形則可延後公開。 又研究成果原則上係歸屬受補助者,但NWO在於特定研究補助之目的有此必要,得於事前與受補助者簽訂書面協定取得研究成果之權利。又若該研究計畫是在國外執行且完全由該國之學術機構負責,在該國的專利法並不損及荷蘭方之當事人依荷蘭專利法可享的權利下,則該國之學術機構就研究成果之開發及利用得依該國專利法之規定。國際合作的公私夥伴間彼此的權利義務會因個案約定而有不同。
「歐盟網實整合藍圖與政策」歐盟在歐盟執委會的支持之下,致力於網實整合的發展,2015年6月歐盟提出以五項關鍵領域作為發展方向,包含交通、能源、健康、生產、以及基礎設施等。其中在智慧製造部分,主要為從大量生產到彈性、個別客製化生產,以及在生產以及產線自動化之下,增加市場競爭力。但針對此等發展,歐盟也提出未來將面臨幾點挑戰: 1.科學:網實整合系統應特別考量社會技術層面、使不同學科整合、結合相關系統理論,以及建構複式領域模型等 2.技術:由於不同的技術方法,因此應建立互通性平台系統、使自動化設計與執行更加成熟、減少資料隱私問題、整合安全性、建立系統方式處理無法確定之資訊等。 3.經濟:透過網實整合,從產品到服務,可建立新的商業模式。 4.教育:網實整合之應用需具備充分的條件,因此,可透過教育及訓練體制來增加對相關應用的認識。 5.法律:減少網實整合系統建立產生的障礙,消除法規解釋不清楚之部分,並且改善以確認整合系統應用正確性。 6.社會:網實整合應用對公共、產業以及政治等層面產生之改變與風險管理。 網實整合在生產力4.0的發展當中,屬於最為核心之部分,目前歐盟所舉出可能產生的面向與問題,值得作為未來政策法制方向之參考。
分子奈米技術獲重大突破加拿大分子奈米技術研究有重大突破,亞伯達大學科學家、艾明頓國家奈米技術研究所的 Bob Wolkow 及其同事經過多年研究,終於開發出分子電晶體。這一科研成果可能會研究報告在最新一期「自然」( Nature )雜誌上發表。 Bob Wolkow 日前接受採訪時指出,目前普通的電晶體中,需要上百萬個電子才能使電流轉換方向,但此次技術突破使得單一電子便能轉換該電流方向,以致可以大幅節約電能。過去曾有研究人員聲稱發現分子的導電性,但均沒有科學證據支持。他和他的同事此次使用掃描穿隧顯微鏡,確認可將直徑約為十億分之一米的分子轉換為電晶體。 此項進展可能是電子工業自五○年代電晶體革命以來的最大突破。多倫多大學的奈米技術專家魯達 Harry Ruda 指出,權威的「自然」雜誌稿件審核過程十分嚴格, Bob Wolkow 的研究成果能夠發表意義重大,必然會引起國人對奈米研究的廣泛注意,對相關領域科學家爭取研究資金很有幫助。 此外 Bob Wolkow 表示,他和他的同事已經著手設計有示範意義的單分子晶體電器,預計在 5 至 10 年內可出成果。他指出,這一示範電器不但可為開拓奈米電腦技術做出貢獻,還有可能為減低電腦晶片的生產成本鋪平道路。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。