美國推動L Prize獎勵創新節能照明產品技術研發

  美國能源部依據「2007年能源獨立與安全法案」(The Energy Independence and Security Act (EISA) of 2007)第655條規定,設立Bright Tomorrow Lighting Prize (L Prize)競賽,這是第一個由美國政府所發起的科技競賽。此一規定係依據「2005年能源政策法」(Energy Policy Act of 2005)第1008條而來,賦予能源部對於與其政策目的相關、有重大貢獻的科技研發或商業應用,得設置競賽活動並提供獎金。因此,為了促進照明產業的發展,而固態照明(solid-state lighting)科技是具有潛力能減少照明能源的使用以達解決氣候變遷的方式之一,因此能源部希望在固態照明技術的研發上扮演催化者的角色,藉由此一競賽來刺激研發超效能固態照明產品以取代傳統照明設備。

  此一規定對工業的發展造成挑戰,因為將會取代兩種日常生活所使用的產品:60W白熾燈泡與PAR 38滷素燈泡。於2008年5月首先展開的是60W白熾燈泡領域,因為此種燈泡是消費者最普遍使用的,約佔美國國內白熾燈泡市場的一半。要獲得此獎項的要求,必須該替代產品要能使用低於10W的電力,節省83%的能源。該競賽已於2011年8月結束,由Philips Lighting North America所研發的高效能LED產品獲得,除頒發一千萬美元的獎金外,亦已與聯邦政府簽署採購合約。該產品預計於2012年春於零售商店上架。

  L Prize的第二階段競賽於2012年3月展開,希望針對PAR 38滷素燈泡領域,鼓勵企業研發LED替代產品,來取代通常使用於零售商店或戶外安全照明的聚光燈和探照燈等傳統PAR 38滷素燈泡。此一競賽獎勵對於全美的照明產業是相當好的挑戰,不僅能研發出創新、具有高效能的產品,亦能提升美國製造業的競爭力。目前全美國約有九千萬個PAR 38滷素燈泡,若能以高效能燈泡取代,能源部預估每年可以節省約11terawatt-hours的電力,並可減少七百萬噸的碳排放。

  要贏得L Prize的產品必須通過嚴格的測試,包括其性能、品質、壽命、價格及是否適合量產等。由於在PAR 38滷素燈泡領域,至少必須製造50%的LED燈泡,且所有的組裝都須在美國完成,因此同時亦提供相當多的工作機會。

相關連結
相關附件
※ 美國推動L Prize獎勵創新節能照明產品技術研發, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5733&no=64&tp=1 (最後瀏覽日:2026/01/21)
引註此篇文章
你可能還會想看
日本內閣府召集研究小組 解決因AI帶來之智財問題

日本內閣府組成「AI時代的智慧財產權研討小組」,由東京大學副校長渡邊敏也作為主席於今(2023)年10月4日召開首次會議,為討論生成式AI(人工智慧)發展帶來的智慧財產權問題。討論主題包括法規範現況、在人類參與有限的情況下由生成式AI所產出之發明是否可以申請專利等,目標於年底前彙整、蒐集企業經營者待解決議題。亦將從其他法律的角度進行討論,例如:AI模仿商品形態是否亦受到日本《不正競爭防止法》之拘束;AI與專利之間的關係,依據日本《專利法》,專利權目前僅授予個人參與創造過程的發明,隨著AI技術的發展,預計會出現難以做出決策的情況,將討論諸如取得專利所須的人類參與程度等問題;以及擁有大量資料的權利持有者向AI開發者提供有償資料的優缺點。與會專家表示,希冀看到從鼓勵利用AI進行新創作和發明之角度出發。日本文化廳和其他相關組織亦同步討論AI生成的作品,若與現有之受著作權保護的作品相似時是否會侵害著作權之議題。 日本內閣府早先於今年5月公布「AI相關論點之初步整理」(AIに関する暫定的な論点整理),我國行政院於今年8月31日正式揭示國科會擬定之「行政院及所屬機關(構)使用生成式AI參考指引」草案,我國經濟部智慧局亦規劃研擬就AI生成物是否享有著作權或專利權、訓練資料合理使用範圍、企業強化營業秘密保護等3大面向建立AI指引,國內外AI相關指引議題均值得持續追蹤瞭解。另,企業無論是擔憂AI技術成果外洩、不慎侵害他人智財權或智財成果被生成式AI侵害之虞等,因應數位化趨勢與數位證據保全而應強化相關管理措施,資策會科法所發布之《營業秘密保護管理規範》、《重要數位資料治理暨管理制度規範(EDGS)》協助企業檢視自身管理措施之符合性並促進有效的落實管理。 本文同步刊登於TIPS網(https://www.tips.org.tw)

美國聯邦法官指出藥用基改作物之種植應予嚴格管理

  美國聯邦法院最近判決美國聯邦官員在 2001 年及 2003 年,允許四家企業在夏威夷種植基改作物以生產試驗用藥的行為,違反環境法規。該許可內容涉及許可在夏威夷州 Kauai, Maui, Molokai and Oahu 種植玉米或甘蔗。   本案法官 Michael Seabright 判決中特別指出,鑑於夏威夷州乃是許多瀕臨絕種或受到絕種威脅的生物的棲地-該州計有 329 種罕見生物,占全美瀕臨絕種生物及受到絕種威脅生物種類之四分之一,而美國農業部動植物健康檢疫服務( Department of Agriculture's Animal and Plant Health Inspection Service )在許可種植基改作物前,竟未先進行初步的環境檢視( preliminary environmental reviews ),很明顯地已違反該機關依據瀕臨絕種生物法( Endangered Species Act )及國家環境政策法( National Environmental Policy Act )所應盡之義務。   本案原告 EarthJustice 認為,本案是第一件聯法院就 biofarming 所做之判決。所謂 biopharming 係指研究人員利用基改技術將植物用來作為生產藥品、抗體、疫苗等生技藥物的生物反應器( bioreactors )。由於植物可以大量栽種,因而若 biopharming 技術可行,將可有效解決生技藥物供給短缺的問題,嘉惠更多的病患,因而, biopharming 被視為未來可能顛覆傳統的藥物生產的一種生技藥物製造方式。目前, biopharming 廣泛使用的植物包括玉米、煙草等。   biopharming 的構想可以較低的成本解決部分生技藥物生產的問題,但其構想看似極具吸引力,不過發展 biopharming 並非毫無挑戰,尤其是如何就藥用基改植物予以隔離管理,避免基因污染。反對者一般主張,藥用基改植物 並未通過食用安全性測試,並不適合人體食用或是當作家畜飼料, 如果栽種藥用基改植物的隔離管理未做好把關,難保這些本應受到嚴格管制的治療性植物進入到食物供應鏈,影響民眾的身體安全。   在民眾健康及環境生態安全的考量下,反對推展 Biopharming 的力量也越來越大,本案即是一個明顯的例子。

FDA發布「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案

  美國食品和藥物管理局(FDA)於2018年9月6日發布關於「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案。」   為滿足FDA促進公共健康的使命,醫療器械上市前核准(PMA)通常涉及較高的不確定性,因此本指引是適當的解決利益風險的判定以支持FDA的決策。包含考量患病群願意接受醫療器械帶來的益處及風險之更多不確定性,特別是沒有可接受的替代治療方案時。   根據指引草案,FDA依據具體情況,判定其利益-風險的適當程度之不確定性,包括: (1) 醫療器械可能帶來好處程度。 (2) 醫療器械存在的風險程度。 (3) 關於替代治療或診斷的利益-風險之不確定程度。 (4) 如果可能,需瞭解患者對醫療器械可能帶來的益處和風險之不確定性觀點。 (5) 公共衛生需求的程度。 (6) 依據臨床證據可支持上市前之可行性。 (7) 能夠減少或解決醫療器械的上市後利益-風險留下之不確定性。 (8) 上市後緩解措施的有效性。 (9) 建立決策類型。(如上市前核准(PMA)和人道用途器材免除(HDE)的核准標準不同。) (10) 對於早期患者訪問醫療器械的可能帶來的益處。   本指引草案中,FDA基於考量有關醫療器械臨床/非臨床訊息之利益風險,需與FDA的規範、監管機關和要求要有一致性。

英國與美國為人工智慧安全共同開發簽署合作備忘錄

英國技術大臣(U.K. Secretary of State for Science)蜜雪兒·多尼蘭(Michelle Donelan)和美國商務部長(U.S. Secretary of Commerce)吉娜·雷蒙多(Gina Raimondo)於2024年4月1日在華盛頓特區簽署一份合作備忘錄(MOU),雙方將共同開發先進人工智慧(frontier AI)模型及測試,成為首批就測試和評估人工智慧模型風險等進行正式合作之國家。 此備忘錄之簽署,是為履行2023年11月在英國的布萊切利公園(Bletchley Park)所舉行的首屆人工智慧安全峰會(AI Safety Summit)上之承諾,諸如先進AI的急速進步及濫用風險、開發者應負責任地測試和評估應採取之適當措施、重視國際合作和資訊共享之必要性等等,以此為基礎羅列出兩國政府將如何在人工智慧安全方面匯集技術知識、資訊和人才,並開展以下幾項聯合活動: 1.制定模型評估的共用框架(model evaluations),包括基礎方法(underpinning methodologies)、基礎設施(infrastructures)和流程(processes)。 2.對可公開近用模型執行至少一次聯合測試演習(joint testing exercise)。 3.在人工智慧安全技術研究方面進行合作,以推進先進人工智慧模型之國際科學知識,並促進人工智慧安全和技術政策的一致性。 4.讓英、美兩國安全研究所(AI Safety Institute)間的人員互相交流利用其團體知識。 5.在其活動範圍內,依據國家法律、法規和契約規定來相互共享資訊。 換言之,兩國的機構將共同制定人工智慧安全測試之國際標準,以及適用於先進人工智慧模型設計、開發、部署、使用之其他標準。確立一套通用人工智慧安全測試方法,並向其他合作夥伴分享該能力,以確保能夠有效應對這些風險。就如英國技術大臣蜜雪兒·多尼蘭強調的,確保人工智慧的安全發展是全球性問題,只有通過共同努力,我們才能面對技術所帶來的風險,並利用這項技術幫助人類過上更好的生活。

TOP