日本修正放送法,跨出水平立法第一步

  2010年11月26日,日本組成臨時國會,在眾議院不到3小時、參議院不到1小時的審查速度,完成「放送法」修正案(連帶小修「電波法」與「電信業法」(電気通信事業法))。新法於同年12月3日公佈,並於2011年6月30日施行。

  日本此次修法,在概念上並未法規匯流,而係將「有線電視放送法」、「電信役務利用放送法」與「有線廣播放送法」整併進「放送法」;概念類似我國主管機關為新聞局時代的「廣電三法整併草案」。細部修正重點如下:
1、「放送」定義由「以供公眾直接收訊為目的之無線傳訊」,修正為「以供公眾直接收訊為目的之電子傳訊」。將網際網路傳輸之方式納入定義中。
2、將「有線電視放送」等舊有定義廢除,新區分「基幹放送」與「一般放送」兩種類。所謂基幹放送,係指依電波法之規定放送之無線電台,使用被指配之專用頻段、或優先使用頻段而為之放送;所謂一般放送,則係指基幹放送以外之放送。
3、廢除舊法中的「委託、受託放送制度」,導入「軟體硬體分離」之概念。
4、總體而言,新法明顯強化了內容管制。除了上述總務大臣之權限外,新法中亦新增電視事業之節目種類公表義務、並強化了放送事故等技術問題的對應規範。

※ 日本修正放送法,跨出水平立法第一步, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5757&no=64&tp=1 (最後瀏覽日:2026/01/12)
引註此篇文章
你可能還會想看
2015年世界智慧財產報告:突破創新與經濟成長

  在一片低迷的全球經濟成長中,2015年11月11日世界智慧財產權組織(WIPO),公布了最新的「世界智慧財產報告:突破創新與經濟成長( World Intellectual Property Report: Breakthrough Innovation and Economic Growth)」,探討知識產權的角色與創新及經濟成長之關連,並鎖定在突破性創新之影響。該報告除討論具代表性歷史創新技術,另也探討當今具有潛在突破性發展之創新技術,同時敦促各國政府及企業,應增加此三領域創新技術相關之投資。   在過去300年來的創新技術發展,已經觸及人類活動的各個層面,並改變了世界的經濟結構。依據2015年WIPO報告,顯示出三領域歷史創新技術如何觸發當時新的企業活動:即飛機、抗生素和半導體。該報告考量到創新驅動成長及未來展望,另探究了三領域具有潛在突破性發展之當今技術:即3D列印、奈米和機器人技術。調查報告也顯示,日本和美國正帶領著一小群國家,推動此三領域創新技術進行突破研究,正因此三領域前瞻技術,掌握著推動未來經濟增長之潛力。   朝向工業化發展的新興中等收入國家中國大陸,自2005年以來在3D列印和機器人領域的專利申請量占全球四分之一以上,為全球國家中比率最高;在奈米技術方面,中國大陸專利申請人占全球近15%,是第3大申請國,但與其他資深創新國家不同的是,中國大陸的大學和公立研究機構申請案所占比例相當高。   WIPO報告強調,創新生態系統的成功要素有三:政府資助科學技術研究,並協助具前景技術從實驗室走到商品化階段;透過充滿活力的金融市場和健全的法規,以及鼓勵企業創新來加強市場競爭力;促進公、私部門創新單位的連結溝通流暢。   該報告亦說明大學和公立研究機構與創新如何日形密切,和傳統飛機、抗生素和半導體領域相較,學研機構在3D列印、奈米技術和機器人領域的專利申請所占比例較高,尤其是在奈米技術領域,全球的學術機構申請人約占四分之一。另外著作權在技術創新也變得更加常見且緊密相關,包括電腦軟體納入著作權保護標的,及3D物品設計和電腦IC晶片設計等的任何形式數位表達之保護。   WIPO「世界智慧財產報告」每兩年發行一次,每期的重點放在不同的IP領域新趨勢,先前的報告已探討「品牌在全球市場的角色(the role that brands play in a global marketplace)」及「不斷變化的創新(the changing face of innovatio)」。

新加坡科技與研究局針對未來工廠提出研究規劃及方向

  新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。   為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

韓國政黨提出法案,建議修改「海關法」禁止營業秘密侵權商品之進出口

據韓國媒體於2024年2月13日報導指出,越來越多韓國企業面臨因為營業秘密的外洩而導致企業虧損的問題,鑒於目前的韓國海關扣留制度(Customs Retention System)僅適用於對外公開的智慧財產權(如商標與專利),多方呼籲應將侵害企業內部營業秘密之侵權商品納入海關法的管制中,甚至有政黨提出法案,建議擴大海關法的適用範圍,禁止侵害韓國企業營業秘密的商品進出口。 該篇報導藉一起正在調查中的營業秘密侵害案件為例,涉案之韓國槍械零件製造商,以「前員工在職時,透過個人電子郵件與客戶進行業務往來,取得企業營業秘密資訊(包括設計圖),並於離職後,創設一間A企業並涉嫌出口利用獲得之營業秘密生產的侵權商品」為由,於2023年向該名離職員工提起訴訟,該案後經政府機關調查,最終於2024年2月底進行首次聽證會。 針對上述案件,國防產業相關人士(Defense Industry Insiders)指出,因為韓國海關僅得依法禁止專利、商標之侵權商品進出口,營業秘密的侵權商品在爭議案件調查期間仍可持續進出口。對此,韓國政黨提出了一項法案(下稱系爭法案),旨在修改海關法,從而允許海關扣留「侵害營業秘密的商品」以及「侵害國家指定的先進工業和國防技術的商品」。 該篇報導也指出,雖韓國海關局對於修法基本上持贊成態度,但也有相關疑慮,如:可能會因為海關扣留範圍的擴大被濫用於壓制競爭行為;相較於容易識別的商標侵權案,營業秘密的範圍很廣,界線模糊,可能造成海關難以立即識別侵權。 綜上,即使系爭法案有利於營業秘密侵權救濟,但仍有上述疑慮有待解決,故本議題仍值得持續關注。而本文仍建議相較於事後救濟,企業可參考資策會科法所發布之「營業秘密保護管理規範」,透過PDCA循環建置系統性營業秘密規範,協助企業從事前防範營業秘密侵權風險,始為企業長久經營之計。 本文同步刊登於TIPS網(https://www.tips.org.tw)

TOP