歐洲發展智慧電網對資訊安全與隱私保護之現況

  歐盟執委會於2011年4月發布的「智慧電網創新發展」(Smart Grids: from innovation to deployment, COM(2011) 202 final),在有關資訊安全與隱私的部分指出,應建立消費者(consumer)隱私的保護規範,促進消費者的使用意願並瞭解其能源的使用狀況;在資訊交換的過程中,亦須保護敏感的商業資訊,使企業(companies)願意以安全的方式提供其能源使用訊息。

  歐盟保護個人資料指令(Directive 95/46/EC)是保護個人資料的主要規範,同時也適用在智慧電網個人資料的保護上,但此時則需要去定義何謂個人資料,因為在智慧電網的發展中,有些屬於非個人資料。若為技術上的資訊而不屬於個人資料的範圍,能源技術服務業者(energy service companies)則不須經同意即可讀取該些資訊以作為分析使用。考慮將來廣泛建置智慧電網後,各會員國可能遭遇如何認定是否為個人資料及其保護的問題,因此目前傾向採取「privacy by design」的方式,亦即在系統設計之初,即納入資訊的分類,而不做事後的判斷。

  對於此,歐盟執委會於2012年3月發布「智慧電表系統發展準備建議」(COMMISSION RECOMMENDATION of 9.3.2012 on preparation for the roll-out of smart metering systems),對於相關定義、資料保護影響的評估(例如各會員國必須填寫並提交執委會提供的評估表格,且提交後則必須遵循相關規範)、設計時的資料保護及預設(例如在系統設計時一併納入對資料的保護,使之符合資料保護的相關法規)、資料保護的方式(例如會員國必須確保個人資料的蒐集、處理及儲存是適當的並且具有關連性)、資料安全(例如對於資料偶然的或非法的破壞、或偶然的喪失等情形,亦應予以規範)、智慧電表的資訊與透明化(例如在蒐集相關個人資料後,仍應依規範提供資料主體相關的訊息)等方面提出建議,供各會員國於制訂相關規範時的依據。

相關附件
※ 歐洲發展智慧電網對資訊安全與隱私保護之現況, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5759&no=64&tp=1 (最後瀏覽日:2026/01/14)
引註此篇文章
你可能還會想看
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

歐盟議會對於電信改革法案並無達成任何協議

  2009年05月06日歐盟議會對於大幅度改革之電信法審議並未通過,議會各會員對於創設一強而有力的電信管制體有共識,惟包裹立法中有一條款對「公民之接近網路權」干涉甚鉅,而引發疑慮。   歐盟電信法改革法案乃採取「包裹式立法」,該改革法案主要著重在科技的進步與高速網路接取的迅速成長。歐盟議會支持其他的改革,包括創設一歐盟電信管制體,賦予其權力以監督電信單一市場;分配電信頻譜予新興行動科技以及促進公民線上資訊保護的隱私權。   然而,針對人民接近使用網路權的限制範圍,卻無法達成協議,導致整個電信包裹立法仍在捷克的議會主席與議會代表之間繼續尋求妥協之道。   如果人民被發現正下載非法的著作物時,法國與英國代表則主張欲擁有較大的權限,以限制人民的接近網路使用權(此乃因其內國法已有針對下載盜版著作的處罰性規定)。其他會員國則採取較為寬容的態度,認為此涉及人民隱私範圍之保護、行為自由、表意自由與資訊接近權,應更審慎為之。   縱使該包裹立法並未被全部支持,一些觀察家認為大部分的改革條款應會通過。然而議會代表與電信委員會對此則未表達肯定之意。有意者認為:若此改革法案繼續維持包裹立法架構,恐將導致整個法案因此延宕,若能針對共識部份先行通過,似乎較能達成有效率的管制措施。

美國商務部產業安全局公布「確保聯網車輛資通訊技術及服務供應鏈安全」法規預告

美國商務部產業安全局(Bureau of Industry and Security, BIS)於2024年9月23日公布「確保聯網車輛資通訊技術及服務供應鏈安全」(Securing the Information and Communications Technology and Services Supply Chain: Connected Vehicles)法規預告(Notice of Proposed Rulemaking, NPRM),旨在透過進口管制措施,保護美國聯網車供應鏈及使用安全,避免國家受到境外敵對勢力的威脅。 相較於BIS於2024年3月1日公告之法規制定預告(Advanced Notice of Proposed Rulemaking, ANPRM)意見徵詢中的討論,本次法規預告明確指出受進口管制的國家為中國及俄國,並將聯網車輛資通訊技術及服務之定義,限縮於車載資通訊系統、自動駕駛系統及衛星或蜂巢式通訊系統,排除資訊洩漏風險較小的車載操作系統、駕駛輔助系統及電池管理系統。法規預告中定義三種禁止交易型態:(1)禁止進口商將任何由中國或俄國擁有、控制或指揮的組織(下稱「中俄組織」)設計、開發、生產或供應(下稱「提供」)的車輛互聯系統(vehicle connectivity system, VCS)硬體進口至美國;(2)禁止聯網車製造商於美國進口或銷售含有中俄組織所提供的軟體之聯網整車;(3)禁止受中俄擁有、控制或指揮的製造商於美國銷售此類整車。 本次法規預告中亦提出兩種例外授權的制度:在特定條件下,例如年產量少於1000輛車、每年行駛公共道路少於30天等,廠商無須事前通知BIS,即可進行交易,然而須保存相關合規證明文件;不符前述一般授權資格者,可申請特殊授權,根據國安風險進行個案審查。其審查重點包含外國干預、資料洩漏、遠端控制潛力等風險。此外,為提升供應鏈透明度並檢查合規性,BIS預計要求VCS硬體進口商及聯網車製造商,每年針對涉及外國利益的交易,提交符合性聲明,並附軟硬體物料清單(Bill of Materials, BOM)證明。BIS針對此規範是否有效且必要進行意見徵詢,值得我國持續關注。

因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議

2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP