歐洲藥物管理局修正發布「藥品交互作用試驗指針」提升用藥安全與效用

  歐洲藥物管理局(European Medicines Agency, EMA)今(2012)年7月6日修正發布「藥品交互作用試驗指針」(Guideline on the Investigation of Drug Interactions),EMA表示這是該指針自1997年發布以來最大的修正,內容包括藥廠如何進行新藥與已經流通使用的藥品的潛在交互作用研究,以及新藥與食品的交互作用研究。

 

  「藥品交互作用試驗指針」內容包括用藥建議方案,其乃基於臨床相關交互作用以及調整用藥劑量、監控病人用藥情形之可行性研究為基礎。同時,有關草藥使用的建議方案也包括在內。

 

  EMA表示,新的修正內容使「藥品交互作用試驗指針」與藥品交互作用研究科學之發展現況趨於一致,例如現已能透過少數的精密設計研究,即可預測臨床相關藥品交互作用的結果,以及在了解近年酵素觸發技術(enzyme induction)與藥物載體(drug-transporter)間的交互作用上的科學進展。

 

  藥物交互作用對於用藥的安全與效用極為重要,許多病人,尤其是年長者經常需要同時服用多種藥物,因多種藥物交互作用而產生的負作用(adverse effects)是患者反覆就醫的重要因素之一,且可能減低個別藥物原有的療效。

 

  「藥品交互作用試驗指針」新修正內容將於2013年1月1日生效,全文共計七部分,主要重點在第五部分的藥物動力學(Pharmacokinetic)交互作用研究,內容包括:從研究進行方式即藥品的吸收、分布、代謝、移轉到人體試驗設計、草藥與特殊食品產品、以及產品特性標示事項等都有建議規範,其全文可至EMA官方網站下載。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 歐洲藥物管理局修正發布「藥品交互作用試驗指針」提升用藥安全與效用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5793&no=64&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
新加坡通過「線上安全(救濟與問責)法案」強化對抗線上傷害

新加坡國會於 2025 年 11 月5日三讀通過「線上安全(救濟與問責)法案」(Online Safety (Relief and Accountability) Bill, OSRA),希望透過「賦權受害者」與「強化平臺問責」來對抗日益嚴重的線上傷害事件。OSRA旨在補充個人在面對有害的線上行為(Online Harmful Activity)傷害時的救濟途徑,並設置「線上安全專員(Commissioner of Online Safety)」為處理投訴與發布救濟指令的專責機關。 OSRA明確定義了多種有害的線上行為,包括針對deepfake的「不實內容濫用」(Inauthentic material abuse),以及惡意公開他人隱私的「人肉搜索」(doxxing),而為了讓損害即時受到控制,線上安全專員在接獲國民投訴並調查評估後,可直接發出具法律效力的指令(Directions),要求平臺移除、隱藏特定內容,或限制惡意帳號的互動;若平臺不遵守指令,線上安全專員亦得向電信業者發出阻斷特定服務,或向應用程式商店發出下架特定應用程式的命令(Orders),無正當理由違反指令或命令皆有可能構成刑事責任。 此外,OSRA亦擴張了平臺的民事責任,當受害者依指定方式向平臺發出「線上傷害通知」後,若平臺未能在合理期間內採取行動,受害者得逕向平臺經營者或網站管理者提起民事訴訟要求損害賠償,若平臺無故怠慢,法院得判決加重損害賠償,希望藉此敦促平臺建立更敏捷的線上傷害控制機制。 值得注意的是,OSRA宣告了廣泛的長臂管轄機制,為保障新加坡國民的權益,不僅法院對OSRA規範的民事、刑事事件有管轄權,線上安全專員發布指令與命令的對象亦不限於境內,表現對抗全球線上傷害的強烈企圖。

3D列印所涉法律議題

  3D列印(3D printing),屬於快速成形技術的一種,以數位模型檔案為基礎,運用粉末狀金屬或塑膠材料等可粘合材料,透過逐層堆疊累積的方式來構造物體的技術(即「積層造形法」)。過去其常在模具製造、工業設計等領域被用於製造模型。現在則可用於產品的直接製造,特別是一些高價值應用(比如髖關節或牙齒,或一些飛機零組件)已經有使用這種技術列印而成的零組件,技術漸漸成熟普及。   3D列印通常是採用數位技術材料印表機來製作。3D印表機的產量以及銷量2013年以來已經得到了極大的增長,其價格也正逐年下降,未來家家戶戶擁有3D列印機器可能就如同擁有洗衣機般平凡,帶出新的商機。該技術在珠寶、鞋類、工業設計、建築、工程和施工(AEC)、汽車、航空太空、牙科、醫療產業、教育、地理訊息系統、土木工程、槍枝以及其他領域都有所應用。   然而3D列印機器的普及只要透過網路平台下載相同的數據檔案,就能夠不花費一毛錢即可得到相同的內容,因此引發了智慧財產權的爭論。   3D列印所涉及的法律議題相當廣泛,有:著作權、專利權、商標權。再者,而在工商業等公司法領域,亦有可能可透過公平法加以保護。另外,專利法、新型專利法 (Gebrauchsmuster)、外觀設計法(Designrcht)對於實際上不能保密的技術解決方案和設計,例如,在產品具體化過程、在跨企業生產時、或物流遞送和服務提供過程中,在法律保護上,則重大意義。   又,在工業4.0因使用跨越國界之互聯網程序和系統,亟需國際法之保護,唯智慧財產權部分仍應該遵守屬地原則,以在該國有法律規定者為限。   在歐洲法律的層級,歐陸未來歐盟專利(EU-Patent)或稱歐洲專利一體化效果(Europäisches Patent mit einheitlicher Wirkung, EPeW) 將得到簡化,將具備共通的專利保護法律框架。

美國食品藥物管理局(FDA)提案更新食品營養標示

  為了讓美國消費者可以完全明瞭日常購買食品所蘊含的營養內容,美國食品藥物管理局(Food and Drug Administration, FDA)於二月提案更新現行食品營養標示(Nutrition Facts Label)所必須彰顯的營養物內容。本次食品營養標示的調整,主要是針對從最新飲食建議、共識報告與全國調查數據所彙整出的結果,就攸關消費者疾病、健康與日常需求的營養物,重新就標示內容進行調整,以強化食品安全的資訊透明,落實保障消費者在選擇食品的資訊平等地位。以下,將針對本次主要調整事項分別作簡要說明:   在新的食品營養標示中,首先,要求額外列出添加糖(added sugars)的數量,以避免消費者因食用過多的糖分而導致肥胖(obesity)或促發其他疾病的發生;第二,要求更新食品營養物份量(serving size),對於食品營養標示需顯示消費者「實際食用」的份量,而非顯示消費者「可能食用」的份量;第三,要求標示鉀(potassium)與維他命D(vitamin D)的含量,以反應相關報告顯示美國人普遍對於鉀與維他命D有攝取不足的現象;第四,調整不同營養素(例如:鈉、膳食纖維與維他命D)的每日攝取標示,使消費者瞭解食品所含營養素內容;第五,持續要求標示總體脂肪(Total Fat)、飽和脂肪(Saturated Fat)與反式脂肪(Trans Fat),並去除卡路里來自脂肪的標示,以提供消費者攸關其健康更有用的資訊;最後,針對食品營養標示的型式進行調整,強調例如像是卡路里、份量與每日攝取比率之標示,以緩和美國近來日益嚴重的肥胖與心臟疾病等問題。   考量美國公共健康問題日益浮出檯面,FDA近來針對食品營養標示型式與內容進行調整,希望藉由資訊透明化的方式,讓消費者明瞭市售食品營養素是否影響自身健康,以作為挑選食品時的首要考量,進而降低不健康食品對消費者所帶來的危害。鑑於近來台灣食安問題日益嚴重,衛生主管機關是否亟需就食品營養標示,參酌美國或國外規範重新另作檢視,來確保消費者買得放心、食得安心,並吃出健康,則是現行衛生主管機關需另考量的重點。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP