歐洲藥物管理局(European Medicines Agency, EMA)今(2012)年7月6日修正發布「藥品交互作用試驗指針」(Guideline on the Investigation of Drug Interactions),EMA表示這是該指針自1997年發布以來最大的修正,內容包括藥廠如何進行新藥與已經流通使用的藥品的潛在交互作用研究,以及新藥與食品的交互作用研究。
「藥品交互作用試驗指針」內容包括用藥建議方案,其乃基於臨床相關交互作用以及調整用藥劑量、監控病人用藥情形之可行性研究為基礎。同時,有關草藥使用的建議方案也包括在內。
EMA表示,新的修正內容使「藥品交互作用試驗指針」與藥品交互作用研究科學之發展現況趨於一致,例如現已能透過少數的精密設計研究,即可預測臨床相關藥品交互作用的結果,以及在了解近年酵素觸發技術(enzyme induction)與藥物載體(drug-transporter)間的交互作用上的科學進展。
藥物交互作用對於用藥的安全與效用極為重要,許多病人,尤其是年長者經常需要同時服用多種藥物,因多種藥物交互作用而產生的負作用(adverse effects)是患者反覆就醫的重要因素之一,且可能減低個別藥物原有的療效。
「藥品交互作用試驗指針」新修正內容將於2013年1月1日生效,全文共計七部分,主要重點在第五部分的藥物動力學(Pharmacokinetic)交互作用研究,內容包括:從研究進行方式即藥品的吸收、分布、代謝、移轉到人體試驗設計、草藥與特殊食品產品、以及產品特性標示事項等都有建議規範,其全文可至EMA官方網站下載。
本文為「經濟部產業技術司科技專案成果」
歐盟在2014針對行動健康(mHealth)綠皮書進行公共諮詢,要求相關之人針對mHealth發展的十一個議題提出意見。進行的時間從2014年4月10日至7月10日,歐盟在2015年1月12日公布諮詢結果,總計有211位參與者回覆,其中71%由組織機構回覆,29%則為個人意見回覆。 在諮詢報告中所提列之十一項議題包含:1. 健康資料的安全性、2. 巨量資料、3. 於目前歐盟法規下的適用情況、4. 病人安全性與資訊透明化、5. mHealth在醫療照護系統的定位以及平等使用、6. 互通性、7. 補助機制、8. 責任歸屬、9. 研究與發展、10.國際合作、11. mHealth市場發展性等。 針對上述議題,諮詢報告提出幾項認為未來發展mHealth時面臨之問題以及應該如何因應。包含: 1. 多數認為應建立隱私安全保護工具,包括資料加密以及驗證機制。逾半數的人認為應該執行資料保護,將法規適用於mHealth相關器材。2. 近半數的人要求病人安全以及資料的透明性,因此,應可建立制度使這些mHealth APP經品質認證通過後上市。3. 對於mHealth的業者而言,認為需要有清楚的法規架構、互通性以及共通的品質標準建立,才能有助於產業的發展。4.透過立法、自律機制以及指導原則的建立,使mHealth APP所衍生之問題能有規範可供解決。5. 部分認為mHealth的成本效益需要有更多的數據證據分析來評估。例如,在美歐國家曾進行一項測試,mHealth可以減少50-60%肺部慢性疾病病人住院以及再次入院的比例。此外,mHealth亦可減少25%老人照護的成本支出。6. 歐盟以及各個國家應該確認mHealth的互通性,基於持續性的照護以及研究目的,能有共通可相互使用的電子醫療紀錄。7. 其次則是應該促使開放標準,並有醫療專家以及使用者積極參與使mHealth能完備進行。 在歐盟此的mHealth公共諮詢報告中,已提出未來可能面臨的問題,歐盟嘗試以既有之指令規範檢視mHealth衍生之問題是否能夠加以因應解決,其主要目的仍在於讓消費者能安全使用,同時亦希望能促進產業開發與進步,其後續發展值得觀察,同時亦可提供相關業者開發時之參考。
歐盟COVID-19疫情位置資料和接觸追蹤工具使用指引歐洲資料保護委員會(European Data Protection Board, EDPD)於2020年4月24日公布COVID-19疫情期間使用位置資料和接觸追蹤工具指引文件(Guidelines 04/2020 on the use of location data and contact tracing tools in the context of the COVID-19 outbreak),就針對COVID-19疫情期間,歐盟成員國利用定位技術和接觸追蹤工具所引發的隱私問題提供相關指導。 EDPD強調,資料保護法規框架於設計時即具備一定彈性,因此,在控制疫情和限制基本人權與自由方面可取得衡平。在面對COVID-19疫情而需要處理個人資料時,應提升社會接受度,並確保有效實施個資保護措施。然而資料和技術雖可成為此次防疫重要的工具,但此次的資料利用鬆綁應僅限用於公共衛生措施。歐盟應指導成員國或相關機構,採取COVID-19相關應變措施時,若涉及處理個人資料,應遵守有效性、必要性、符合比例等原則。本次指引針對利用位置資料和接觸追蹤工具的特定兩種情況,闡明其利用條件和原則。情況一是使用位置資料建立病毒傳播模型,並進一步評估及研擬整體有效的限制措施;情況二是針對有接觸史病患進行追踪,目的是為通知確診病人或疑似個案以進行隔離,以便儘早切斷傳播鏈。 EDPB指出,GDPR和電子隱私保護指令(ePrivacy Directive)均有特別規定,允許各成員國及歐盟層級公共單位使用匿名及個人資料監控新冠病毒的傳播,並呼籲透過個人自願性安裝接觸追蹤工具。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
何謂德國KOINNO創新採購中心?德國KOINNO創新採購中心是由德國經濟暨能源辦事處(Bundesministerium für Wirtschaft und Energie)轄下的倉儲管理、採購與物流經濟協會(Bundesverband Materialwirtschaft,Einkauf und Logistik e.V, BME)所執掌,該協會主要任務為關於政府採購與各領域的物流管理的研發成果技術移轉、促進職業與終生教育的補助與經驗交流,目的在於創造未來趨勢、經濟發展與鼓勵創新。而KOINNO創新採購中心的成立宗旨即是持續提供政府採購的創新來源,並引導具有創新元素的政府採購實踐為成功經驗與最佳練習。 其中政府採購方面,BME在2004年建立該平臺,其功能為提供使研發成果能最佳實踐的對話交流、創造未來發展趨勢與創新、將研發成果技轉給採購機關與提升政府採購的價值。德國慕尼黑國防大學的公共採購法學與管理研究中心(Forschungszenturm für Recht und Management öffentlicher Beschaffung der Universität der Bundeswehr München,FoRMöB)是KOINNO的合作夥伴,同時也是德國唯一以企業經營與法學觀點分析公共採購問題的跨領域研究中心。