美國正式推行「聯邦政府風險與授權管理計畫」

  2010年,美國聯邦政府展開「聯邦政府風險與授權管理計畫」(Federal Risk and Authorization Management Program,FedRAMP),在經過2年的研究與整備後,聯邦政府總務管理局於2012年06月06日宣佈FedRAMP正式運作。 FedRAMP是由國土安全部、聯邦政府總務管理局、國防部、國家安全局以及國家科技研究所共同撰寫及建置。該計畫的目的是建立一套全國政府機關可遵循依據,針對雲端服務的風險評估、授權管理的標準作業規範。

 

  根據FedRAMP,雲端服務業者欲通過該計畫的評估,其評估程序可分為提出申請、檔案安全控管、進行安全測試、完成安全評估等四個階段。未來所有雲端產品與服務業者,都必須達到該計畫的標準規範,才能為美國政府機關提供雲端產品及服務。

 

  對於雲端服務業者的評估,必須經由FedRAMP認證的第三方機構來進行審查,第三方評估機構欲通過認證,除了要符合FedRAMP的需求外,還必須具備雲端資訊系統的評估能力、備妥安全評估計畫、以及安全評估報告等,另外亦同時引進了ISO/IEC17020以及ISO/IEC17011之規定,來驗證檢驗機構的品質與技術能力。目前為止,聯邦政府總務管理局已經公佈十個獲得授權的機構。

 

  聯邦政府總務管理局同時並期待在2012年的年底之前,能夠有三個雲端服務提供者通過審查,然而,由於制度才剛上路不久,是否能夠跟上產業變遷的腳步並順利達成目標,仍有待進一步觀察。

相關連結
※ 美國正式推行「聯邦政府風險與授權管理計畫」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5795&no=64&tp=1 (最後瀏覽日:2026/02/22)
引註此篇文章
你可能還會想看
英國消費者保護法明確將數位內容商品消費納入規範,加重企業經營者責任

  英國在今年10月1日正式實施新的消費者保護法,除了明確規定30天內可以退還瑕疵商品外(舊法並無規定明確的期間),最主要重要變革在於納入數位內容商品消費的相關條款,以促進目前蓬勃發展的數位內容產業。   依照新法的規定,所謂的數位內容係指以數位形式(in digital form)所產製或提供之資料,據此包括了任何可以下載的商品以及串流服務,例如app、音樂、電影、遊戲以及電子書。其中關於消費者之保障如下: 一、在一定要件下有權利要求企業經營者修復或替換有瑕疵之數位內容商品; 二、若數位內容商品之瑕疵無法回復時,得要求企業經營者退還百分之百所支付的款項; 三、除此之外,若是數位內容商品因故而造成消費者的載具損害時,例如因所販售的軟體帶有電腦病毒而使消費者電腦中毒,企業經營者應負損害賠償責任。   根據英國娛樂產業公會(Entertainment Retailers Association),英國在去年(2014)有關數位內容商品(音樂、影片、遊戲)的消費額達到28億英鎊(約897億新台幣),英國舊消費者保護法並未針對數位內容商品有明確的規範,尤以近年數位內容商品的糾紛不斷(尤以遊戲為大宗),此次修法無疑是對常在網路購買數位商品的消費者一大保障。

M2M時代下的資料保護權利之進展-歐盟與日本觀察

簡介人工智慧的智慧財產權保護趨勢

近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。 若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含: 1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險; 2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟; 3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。 綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

TOP