日本從事農業者高齡少子化以致後繼無人,農業ICT(Information and Communication Technology)可使資深農民內隱知識外顯化而利於經驗傳承,例如已有地區透過除草機器人、自動運行農機等ICT農機,蒐集稻米收穫質量之數據進行分析,實作出施肥最適條件的成功案例。 然而成功案例之數據利用,延伸至其他地區實踐時卻顯得窒礙難行。首先是成本面,農場計測溫溼度等數據之感測器的設置、管理維護與通信等成本負擔,宛如藏寶洞前豎立之石門,不得其門而入。另一造門磚是農機或感測器等不同業者之系統服務互不相容,且數據無法互換共用,為求最適合特定地區與農作物之農業ICT組合,且能移植成功案例至其他地區,系統相容數據共用亦是當務之急。 日本農業數據協作平台(簡稱WAGRI),可為大喊芝麻開門之鑰,日本於2017年內閣府計畫支持下,由農業生產法人、農機製造商、ICT供應商、大學與研究機關等組成聯盟,一同建置具備「合作」(打破系統隔閡使數據得以相容互換)、「共有」(數據由提供者選定分享方式)、「提供」(由公私部門提供土壤、氣象等數據)三大功能之WAGRI,今年已有實作案例指出,活用WAGRI後,在數據蒐集與利用上的勞力與時間成本明顯縮減。 台灣農業同樣面臨高齡化、傳承之困境,日本WAGRI整合與共享數據的模式可作為我國發展農業ICT活用數據之參考。
2025年美國營業秘密管理重要實務本文整理美國2025上半年營業秘密管理重要實務,以協助企業強化營業秘密保護。 一、實務常見的兩種不當使用營業秘密情境 由於數位化發展與遠距工作盛行,員工可以更容易地透過隨身碟、電子信箱等方式接觸並傳輸機密(數位文件)。 提醒公司應留意兩個實務常見的不當使用營業秘密的情境: 1. 員工離職後創業或跳槽至競爭公司。 2. 在公司因收購計畫進行盡職調查時,或公司與他方存有供應商、獨立承包商等合作關係期間,公司與他方共享機密資料,接收資訊方卻於協商破局/合作結束後持續留存並不當使用機密。 二、為防患未然,建議公司應「打造營業秘密保護文化」 「打造營業秘密保護文化」的7項重點如下: 1. 識別機密 公司應識別自身所擁有的營業秘密,區分營業秘密與一般資料。如果公司不清楚自己的營業秘密範圍,也會增加員工不知道需要謹慎處理哪些資料的風險。 2. 控管機密文件的重製、流通行為 監控機密文件的列印、下載等重製行為,禁止將公司機密資料傳輸至私人信箱或私人雲端帳戶。 3. 與員工簽訂保密契約,定期提醒保密義務,並客製化員工培訓課程 公司除與員工簽訂保密契約外,當員工開始新專案、轉調部門或升遷時,職務內容的變動,也會連帶影響公司需要向員工更新其對保密義務的理解。 公司應自員工入職起,進行定期的保密培訓與宣導,並針對特定職位客製化相關具體的保密情境,讓員工能夠確實了解公司的保密政策,知道自己應採取/不應採取某些行動,以及行動背後的原因。例如:工程師須了解技術文件的保護方式;銷售團隊需要與客戶資料、定價策略相關的保密培訓課程。 4. 離職人員管理 離職面談應明確提醒員工具持續性的保密義務,且留下相關紀錄,內容應包含對員工任職期間所接觸任何營業秘密的討論資訊,並讓員工簽署書面聲明,確認自己具有保密義務。 5. 網路控管 遠距登入公司系統須透過VPN。 6. 外部活動管理 公司應留意與外部單位(潛在合作夥伴、供應商或客戶)共用敏感資料時,契約須明確約定可共用的資料範圍、可共用資料的人員以及可共用資料的情境。契約應包含保密契約、標示機密資料、返還機密的流程以及定期稽核以確保遵守保密義務。 7. 稽核與改善 定期稽核與持續改善有助於強化營業秘密保護機制,例如:法務、資訊、研發及銷售等部門跨部門協力合作,並持續培訓以打造營業秘密保護文化。 三、面臨營業秘密訴訟,行動策略為關鍵 營業秘密案件通常需要立即採取行動,以防止造成無法彌補的損害。由於在訴訟階段,法院不會僅憑「懷疑」或「模糊描述」就核發禁制令。建議公司平時應落實以下管理措施,以便能夠在發現風險行為後2~3天內,迅速蒐集相應佐證: 1. 證據保全機制應包含:妥善保存電子郵件、系統存取紀錄、裝置使用紀錄等證據。 2. 區分營業秘密的範圍。 3. 持續執行公司所設定的控管措施,如:公司保密政策;保密契約、僱傭契約等契約的保密義務;員工培訓。 4. 留存能夠佐證營業秘密的經濟價值的相關資訊,如:研發投入成本、競爭優勢等。 綜上,公司如欲減少實務上營業秘密糾紛風險,應及早確認是否落實、需要精進公司的營業秘密管理機制,建議國內公司可參考資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」,協助公司檢視並循序調整營業秘密管理作法。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。