依據統計,2011年全球電玩遊戲產值約516億歐元,是娛樂產業中成長最快速的領域,行動遊戲(mobile gaming)也因智慧型手機普及率之提升,在其中扮演舉足輕重的角色。有鑒於此,芬蘭政府於今(2012)年啟動Skene-遊戲補給計畫(Skene-Game Refueled,以下簡稱Skene計畫)促進其遊戲產業的研發創新。
Skene計畫預計從今(2012)年起實施至2015年,將投入7000萬歐元資金補助,其中3000萬歐元由芬蘭的創新補助機關-國家技術創新局(teknologian ja innovaatioiden kehittämiskeskus,Tekes)提供。該計畫致力於創造國際級遊戲及娛樂聚落的形成,期能使芬蘭企業成為國際遊戲產業生態中的重要成員。芬蘭政府欲藉由此一計畫,突破芬蘭Rovio公司過往開發「憤怒鳥」(angry bird)遊戲之偶發性的成功模式,讓芬蘭遊戲產業獲得長期永續的商業效益。Tekes於本計畫中特別強調知識分享的重要,認為此計畫的核心目的在於促進相關知識或經驗,得以在研究機構的專家、遊戲公司乃至其他產業間有系統的傳遞。
事實上芬蘭推動Skene計畫之動機,除了著眼於遊戲產業本身所帶來的龐大商業效益外,也看到遊戲開發過程中產出工具在其他產業之模型、模擬實驗、使用者介面設計及傳統軟體開發方面之助益(例如在醫療照護產業、運算服務之運用或協助教育環境建構或運動訓練等)。由此觀之,芬蘭政府透過Skene計畫推動遊戲產業研發創新之考量,尚包括帶動其他產業之提升的深遠思考。
近年來我國遊戲產業在商業上的表現逐漸受到各界重視,在此背景下,芬蘭Skene計畫無論在具體作為及其背後的思維模式上,皆有我國可以參考借鏡之處。
本文為「經濟部產業技術司科技專案成果」
新加坡為全球性商務金融重鎮,影響全球金融市場甚鉅,其法制變革具有指標性意義,近年來新加坡政府針對電子支付、數位代幣領域加強監管,於2017年新加坡金管局(Monetary Authority of Singapore, MAS)發布「數位代幣發行指引」;2019年通過「支付服務法」(Payment Service Act),規定從事付款業務之單位,皆須先取得許可執照。新加坡國會更於2022年4月5日三讀通過「金融服務與市場法」 (Financial Services and Markets Act),旨在促使金管局得更有效率因應、監管當今變化快速、逐漸數位化之金融市場。 該法規主要著眼於金管局對於金融業中數位代幣及加密貨幣業者之控管,並使合法之加密貨幣業者更具競爭優勢。首先明定受規範之相關金融機構或特定個人,若其具違法情事,金管局得對其發布禁制令(Prohibition Order);對於得受禁制令之主體及其涵蓋範圍,相較於過去其他法案更為擴張。 在主體方面納入「數位代幣服務供應商」(Digital Token Service Providers),以防止洗錢、進行資助恐怖主義之活動或其他金融犯罪行為,禁制令可視違法者之情節嚴重程度,而區分禁制期間為特定時間或至永久。此外,金管局亦得於特定情形下,評估要求相關金融機構進行強制股份轉讓或重組。 綜上,可以知悉新加坡當局有意對新興型態之金融模式進行有效監管,雖可能被認定與過去寬鬆、開放市場之控管機制背道而馳,惟面臨如此多元且發展快速之金融市場,著實有不斷將法規進行修正,以靈活配合當下金融趨勢及發展之必要性。
美國FDA為因應藥品汙染事故公告四項製藥新指導原則美國食品藥物管理局(the United States Food and Drug Administration,以下簡稱FDA)於2015年2月13日公告四項與藥品製造有關之指導原則(guidance)作為補充相關政策執行之依據,主要涉及藥品製程中,藥品安全不良事件回報機制、尚未經許可之生技產品的處理模式、藥品重新包裝,以及自願登記制度中外包設施之認定應進行的程序與要求。 該四項指導原則係源於FDA依據2013年立法通過之藥物品質與安全法(The Drug Quality and Security Act,以下簡稱DQSA)所制定之最新指導原則。因2012年位於麻州的新英格蘭藥物化合中心(The New England Compounding Center),生產類固醇注射藥劑卻遭到汙染,爆發致命的黴菌腦膜炎傳染事故,故美國國會制定DQSA,以避免相同事故再次發生。DQSA要求建立自願登記制度(system of voluntary registration),倘若製藥廠自願同意FDA之監督,成為所謂的外包設施(outsourcing facilities)。作為回饋,FDA即可建議特定醫院向該製藥廠購買藥品。 而本次四項指導原則之內容,其一主要涉及外包設施進行藥物安全不良事件回報之相關規定,要求製藥廠必須回報所有無法預見且嚴重的藥物安全不良事件。在不良事件報告中必須呈現四項資訊,其中包括患者、不良事件首名發現者、所述可疑藥物以及不良事件的類型。同時,禁止藥品在上市時將這些不良事件標示為潛在副作用。第二份指導原則對於尚未經許可的生技產品,規定可進行混合,稀釋或重新包裝之方法;並排除適用某些類型的產品,如細胞療法和疫苗等。第三份指導原則涉及重新包裝之規定,內容包括包裝地點以及如何進行產品的重新包裝、監督、銷售和分發等其他相關事項。而第四份指導原則規範那些類型之藥品製造實體應登記為外包設施。為此,FDA亦指出聯邦食品藥物和化妝品法(the Federal Food Drug & Cosmetic Act)之規定裡,已經要求製造商從事無菌藥品生產時,必須將法規針對外包設施之要求一併納入考量。
美國聯邦首席資料長委員會指出2021年工作重點之一在於促進跨機關的資料共享2021年1月6日,美國聯邦首席資料長委員會(Federal Chief Data Officers Council, 後稱CDO Council)向美國國會提交報告,報告中指出今年度的工作重點之一將放在促進聯邦政府跨機關的資料共享,以極大化政府資料的價值。 CDO Council是根據2018年的《實證決策基本法》(Foundations for Evidence-Based Policymaking Act of 2018)所設立,並於2020年1月正式召開第一次會議,該委員會的成員包含聯邦政府各部會的首席資料長(Chief Data Officers, CDO)。該委員會的任務是加強各部會利用資料作為戰略資產的能力,促進聯邦政府資料的管理、使用、保護、傳播和衍生,以達到聯邦資料戰略(Federal Data Strategy)所設定的目標。 美國農業部首席資料長兼CDO Council主席Ted Kaouk表示,以農業部所建置的農業資料共通平台(Ag DATA COMMONS)為例,農業部所屬機關間透過資料共享,已產生許多應用。 譬如:該部所屬的食品與營養局(Food and Nutrition Service, FNS)利用經濟研究局(Economic Research Service, ERS)統計的糧食不安全(Food Insecurity)資料,推動食物箱計畫(Farmers to Families Food Box Program);農業部所屬風險管理局(Risk Management Agency, RMA)使用平台上其他單位的資料,作為作物保險(crop insurance)的決策依據;農業部所屬食品安全和檢驗局(Food Safety and Inspection Service, FSIS)使用平台上其他單位的資料,來追蹤肉品加工廠的狀況。 CDO Council於去(2020)年10月成立了一個資料共享工作小組(Data Sharing Working Group),負責研究聯邦政府各機關間資料共享的使用案例,希望透過這樣的努力,強化聯邦政府的資料治理,產生高品質與即時性的資料,以此作為政府的決策依據。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。