2010年藥物主動監視法規(pharmacovigilance legislation)要求EMA和EMCDDA必須加強在藥物產品濫用(包含不合法藥品)的資訊交換合作關係,是以,EMA和EMCDDA於今年九月初於葡萄牙里斯本相互簽署了修訂工作協議(amended working arrangement),約定在新型精神性影響藥物與藥物濫用的面向上,加強相互間的資訊交流合作。
於EMA和EMCDDA所簽訂的修正工作協議中,雙方約定就下列領域深化資訊交換:
1.雙方需各自依照歐盟執委會2005/387/JHA決議和歐盟1235/2010號法規第28c(2)條,對於所擁有之新型精神性影響藥物與藥物濫用(包含不合法藥品)資訊進行交換合作;
2.資訊交換需透過通常基準的報告形式由EMCDDA送至EMA,並含括有關於藥物產品濫用、不合法藥物,以及新型精神性影響物質等相關資訊;
3.EMA必須通知EMCDDA有關於藥物產品濫用的有效導因(validated signals),同時,EMA必須提供EMCDDA有關於藥物產品濫用和新型精神性影響藥品市場核准狀況的細部資訊;
4.EMA對於選定藥物產品之風險管理計畫的界定,可考量是否需先行與EMCDDA作諮詢意見交換;
5.EMA和EMCDDA在歐盟執委會2005/387/JHA決議和歐盟1235/2010號法規第28c(2)條所設基礎的合作模式下,必須要特別注意確保人類或動物健康照護並無惡化的情事,同時應確保科學建議之潛在衝突於前階段將會被界定與管理;
6.EMA和EMCDDA兩者間諮詢的進行,必須避免非關於新型精神性影響物質風險評估之科學建議的潛在衝突;
7.對於任何額外合作計畫的執行,必須考量EMA和EMCDDA兩者的例行性工作規劃;
8.對於特定計畫需要額外資源時,必須經由EMA和EMCDDA共同同意,並將同意文件附於現階段的工作協議中;
9.EMA和EMCDDA可就其各自舉辦的會議相互邀請對方,並邀請對該會議有興趣的其他團體參與;
10.對於EMA和EMCDDA間實際的合作面向,將在工作協議既定架構下繼續發展。
除了前述的適用範圍外,EMA和EMCDDA的修訂工作協議,亦有就相互諮詢和秘密資訊等領域作出約定,以確保資訊交換係在符合雙方需求與不侵害個人基本權利的情況下進行。有鑑於EMA和EMCDDA希冀藉由資源互補的強化約定,來彌補自身於精神性影響藥物和藥物濫用領域的資訊不足缺陷,是否我國在相關醫療、藥品管制或是藥品商業化資訊需有跨機關的整合機制,以促使我國在醫療、醫藥資訊交換與流通,在不侵害個人基本權利的情況下,能夠發揮互益效用,則是我國有關單位必須審慎思考的問題。
本文為「經濟部產業技術司科技專案成果」
Google在2006年2月11日推出最新版的桌面搜尋工具Google Desktop 3,它的最新功能可以讓用戶同時搜尋多台電腦的資料。當啟用這項功能後,它會將電腦裡的文件和文字檔案(如Word、Excel)內容予以複製上傳到Google的伺服器上。當用戶在一台電腦搜尋資料時,也會在其他台安裝此工具的電腦自動開始搜尋。Google 表示,目前已經有很多人同時使用數台電腦,這個新功能可以讓使用者的生活更為便利。 但是倡導網路隱私權的團體Electronic Frontier基金會卻表示憂慮。由於新功能可能會讓駭客更容易盜取用戶個人資料,用戶的個人隱私將面臨更大的威脅。該基金會律師Fred von Lohmann認為,使用者應重視個人資料被放在Google伺服器上可能產生的問題,這比便利性更為重要。因為使用時若未花時間處理功能選項和設定問題,它將可能導致個人資料諸如納稅、醫藥和財物紀錄,以及其他文字檔案等資料外洩。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
英國政府推動Midata計畫,促進智慧商業創新及跨產業應用近來國際間許多國家投入智慧商業及智慧消費之發展,為兼顧保障個人資料權利前提下,鼓勵產業界從事商業創新,英國商務創新技術部(Department for Business, Innovation & Skills)於2013年7月宣布促成「Midata創新實驗計畫平台」(midata innovation lab),由英國政府、企業界、消費者團體、監管機構和貿易機構共同組成,此為示範性自律性組織,參與之業者/機構於應消費者要求(consumer’s request)情形下,將所擁有消費者資料,特別是交易資料(transaction data),以電子形式及機器易讀取形式(electronic, machine readable format)對「我的資料」(Midata)體系公開(release);並且,將可更便利消費者利用這些資料瞭解自己的消費行為,在購買產品和服務時可以做出更為明智的選擇。 英國商務創新技術部係於2011年4月,開始提出所謂「Midata計畫」:於「更好選擇;更好交易環境;提昇消費者權力」政策(Providing better information and protection for consumers),宣示推動「Midata計畫」,作為提昇資訊力量(power of information)重要策略。為積極推動,「Midata計畫」,並協助產業界能有更詳細遵循指引,於2012年7月公告「Midata政府產業諮詢報告」(midata: government response to the 2012 consultation),同年12月出版「Midata隱私影響評估報告」 (midata: privacy impact assessment report)。 為配合上述政策施行,由產業界、組織、政府機構所共同組成的「Midata創新實驗計畫平台」(midata innovation lab),已開始展開運作。此平台認為,近來越來越多實務情形證明,個人資料對於企業而言已被視為日漸重要的資產,並且未來將成為提供更個人化、多元化之產品服務之重要基礎。倘若能在確保消費者個人資料相關權利之前提下,促成產業界積極投入發展,以「我的資料(Midata)創新實驗計畫」為運作平台,對於企業所持有個人資料,兼顧企業與消費者原則共同獲益,將可因應趨勢取得商業先機。 以英國商務創新技術部規劃政策,前期試行推動先以「核心產業」(core sectors)(金融產業、電信產業、能源產業)為導入適用,待實施具一定成效後,將延伸推廣至其他產業領域(non-core sectors),而後也將由現行初期以產業自律性參與計畫模式,進展至以法令規範強制實施的階段。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。