新加坡於2012年10月15日通過該國第一個消費者個人資料保護法案,該法案主要規範私人機關蒐集、利用以及揭露個人資料之行為,將於2013年1月正式施行。
該法案亦成立新加坡個人資料保護委員會(Personal Data Protection Commission, 以下簡稱PDPC),並成立拒絕來電登記處(Do-Not-Call Registry),該處由PDPC進行維運。PDPC將是新加坡主要掌管個人資料保護的主管機關,而且也負責推動個人資料保護法案以及被賦予增進新加坡人民個人資料保護認知之任務。
於該法案之規劃中,資料當事人可以在拒絕來電登記處註冊其位置在新加坡之電話號碼,以防止私人機關為了商業行銷之理由而進行電話行銷。假設資料當事人已完成相關登記卻持續收到行銷電話時,可以向PDPC進行申訴。
除此之外,私人機關於蒐集、儲存個人資料前,必須尋求消費者之同意,而且必須通知當事人資料蒐集之目的。私人機關於傳輸個人資料至新加坡境外時,也必須確保以提供相對安全的個人資料保護作法,例如透過契約或者協議之簽訂等。
違反個人資料保護法規之公司,每一個違反事件可能被科以最高美金820,000元之罰鍰,對於每一個消費者最高可能必須負上美金8200元之賠償責任。法律施行後,企業被賦予18個月的法規遵循準備期間,而停止打來登記處預計將於2014年年中設置完成。
人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。
RFID應用發展與相關法制座談會紀實