FCC通過許可有線電視系統對基本電視服務進行加密,以對抗盜接訊號

  美國聯邦通信委員會(FCC)批准,有線電視業者可對其基本電視服務進行完全加密,有線電視用戶將需要向有線電視業者租用機上盒或使用CableCARD的技術,以繼續收看有線電視。在本項新規則發布之前,有線電視業者被禁止在基本服務加密,有線電視用戶不需租用額外設備便能收看基本電視服務內容。業界人士表示,據估計目前約有近5%非法盜接的服務,造成每年約5億美元的收入損失,此一新規則有助於對抗訊號盜接的問題。

 

  同時隨著數位有線電視普及程度的提高,大多數有線電視用戶已經透過機上盒或CableCARD技術收看有線電視,僅少部份用戶可透過特殊裝置接收數位電視基本服務,但因為此種接收方式無須加密,因此存在有盜接的問題,因此有線電視業者希望FCC能夠放寬規定,使業者可將整個有線電視系統均加密傳輸,避免訊號盜接的問題。

 

  然而相對的,一些第三方公司所生產的設備將因為有線電視系統業者的加密,而無法提供低成本的替代裝置,有線電視用戶將必須向有線電視公司租用機上盒,部份第三方公司生產的機上盒具有DVR功能,如果系統業者完全加密他們的內容,這些第三方設備的生產將必須花費額外的成本與時間與系統業者協商。有線電視業者如Comcast自然是抱持樂觀其成的看法,全系統加密使業者可在遠端管理電視訊號之播送,而無須至消費者家戶進行,可節省人力與成本。

相關連結
※ FCC通過許可有線電視系統對基本電視服務進行加密,以對抗盜接訊號, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5879&no=64&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

日本通過包括違法著作物下載刑罰化在內的著作權修正規定

  包括違法下載刑罰化在內的著作權法修正草案在06月20日下午於日本參議院本會議中表決通過。違法下載刑罰化等的規定從10月01開始施行,而其它規定則從2013年01月01日開始施行。   日本政府最初於06月15日於眾議院文部科學委員會所提出的修正案為因應隨著數位化、網路化的發展而生之著作物利用態樣多元化及著作物違法利用及流通等的問題,包括 (1) 所謂「偶然入鏡」等未產生實害之著作物的非授權使用的放寬; (2) 國立國會圖書館的數化位資料自動公眾發送等的相關規定; (3) 依關於公文書等管理之法律而生的利用行為的相關規定; (4) 所謂「擷取違法化」等、關於技術面的保護手段之規定的整備等,在同委員會內獲得全員一致的表決通過。   此外,在同委員會也就自民黨、民主黨(提供兩點全名)兩黨所提出的針對「違法著作物的下載」導入刑事罰的修正案進行表決,獲得通過,並在其後的眾議院本會議中併同前述文部科學委員會所提出之修正案一併表決通過,復送交參議院進行表決。違法著作權的下載行為早在先前2009年的著作權修法時即已認為為違法化,惟一直以來並沒有罰則之規定。   在日本音樂相關權利人團體很早開始就提出了違法下載刑罰化的強烈要求,不過都沒有納入著作權法修正的相關審議會進行審議。不過,此次在權利人團體強力向以自公兩黨為首的政黨進行遊說的結果,最後通過了「兩年以下的有期徒期或20萬圓以下罰金」的修正內容,並於本次參議院本會議中表決通過成立。

全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任

全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。

產業創新條例因應放寬公司研發抵減、加強留才制度之修正草案

TOP