FCC通過許可有線電視系統對基本電視服務進行加密,以對抗盜接訊號

  美國聯邦通信委員會(FCC)批准,有線電視業者可對其基本電視服務進行完全加密,有線電視用戶將需要向有線電視業者租用機上盒或使用CableCARD的技術,以繼續收看有線電視。在本項新規則發布之前,有線電視業者被禁止在基本服務加密,有線電視用戶不需租用額外設備便能收看基本電視服務內容。業界人士表示,據估計目前約有近5%非法盜接的服務,造成每年約5億美元的收入損失,此一新規則有助於對抗訊號盜接的問題。

 

  同時隨著數位有線電視普及程度的提高,大多數有線電視用戶已經透過機上盒或CableCARD技術收看有線電視,僅少部份用戶可透過特殊裝置接收數位電視基本服務,但因為此種接收方式無須加密,因此存在有盜接的問題,因此有線電視業者希望FCC能夠放寬規定,使業者可將整個有線電視系統均加密傳輸,避免訊號盜接的問題。

 

  然而相對的,一些第三方公司所生產的設備將因為有線電視系統業者的加密,而無法提供低成本的替代裝置,有線電視用戶將必須向有線電視公司租用機上盒,部份第三方公司生產的機上盒具有DVR功能,如果系統業者完全加密他們的內容,這些第三方設備的生產將必須花費額外的成本與時間與系統業者協商。有線電視業者如Comcast自然是抱持樂觀其成的看法,全系統加密使業者可在遠端管理電視訊號之播送,而無須至消費者家戶進行,可節省人力與成本。

相關連結
※ FCC通過許可有線電視系統對基本電視服務進行加密,以對抗盜接訊號, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5879&no=64&tp=1 (最後瀏覽日:2026/01/28)
引註此篇文章
你可能還會想看
加拿大在商展中展現數位內容產業之實力

加拿大領導廠商 ICTV ,在 NCTA 國家商展 (NCTA National Show) 中,帶來了加拿大在互動電視內容方面的最新科技展現。 ICTV 是著名產品 HeadendWare 的製造商,此產品是在寬頻產業中傳輸互動電視內容最強大的平台。此一平台目前已取得多家加拿大廠商的協力合約,將共同在此平台上發展遊戲、娛樂與資訊內容等將關服務。   ICTV 解決方案部門的主管表示,加拿大確實是在互動數位內容方面的技術領先國家,並且正持續吸引更多的廠商與其合作。確實,加拿大的科技產業在全球屬領先地位,過去國內廠商對於新科技的注意力,大都放在美國、歐洲及日韓等國,或許,對加拿大進行更深入的關心與瞭解,可以挖掘到更多的報寶藏。

挪威和瑞典簽署綠色認證協議書

  近年,全球普遍掀起以永續經營為科技創新研發指導方針的構想,世界各國無不竭盡心力思考各種可行的實踐方式,以求國家科技研究發展的同時,亦能達成與自然和諧共存的目標。為落實可再生能源(renewable energy)的使用,挪威和瑞典兩國已於2009年秋天針對綠色認證(green certificates)進行相關的討論,並於2010年12月8日簽署合作議定書。   綠色認證是針對使用可再生能源(如風力、太陽能、和水力發電等)所生之特定電力認證。因其目的乃為強調再生能源的使用,故相關環保團體期待藉由此種認證方式來提升再生資源的使用率。早在2003年5月1日開始,瑞典即已有綠色認證市場的存在,而該跨國合作議定書之簽署,對於瑞典而言,不僅能擴張其既有之相關市場版圖外,兩國更能藉此進行跨國合作,提高能源生產量並提升與其他競爭國家之市場競爭力。更重要的是,雙方皆期待能提供其國民更穩定的能源價格。   目前,挪威和瑞典皆同時傾向以風力發電為該合作議定書未來發展的主要方向。不過,在考量兩國自身的環境條件後,挪威會輔以水力發電為其發展方向,而瑞典則會著重在以生物面向為發電基礎的方式為其第二發展方向。該綠色認證系統預計於2012年1月1日正式啟動,並且為期至2020年止。未來,此綠色認證系統上路後,對於挪威和瑞典兩國之可再生能源發展和永續經營的落實,究竟會產生何種火花,值得持續關注。

資通安全法律案例宣導彙編 第3輯

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

TOP