比利時法院要求Google移除新聞轉載連結

  儘管類似 Google News 提供新聞連結的作法在網路上屢見不鮮, Google 也認為其行為完全合法,但 比利時布魯塞爾法院於 9 月 5 日 作出的判決,仍要求 Google 在沒有獲得對方允許或支付相應費用的情況下,應 停止從法語報紙上節錄新聞片段,否則將會面臨每天一百萬歐元的罰款。 Google 雖因此暫時移除了相關新聞的轉載連結,卻打算對此判決提起上訴。


  該案法官指出, Google 在這些報章媒體網站更新相關新聞後,才在 Google 網站上提供轉載內容,法院認為這不但侵害了作者的著作權,且違反比利時有關資料庫的法律。除了移除轉載連結外,法院也要求 Google 必須在 Google 比利時網站上公布該判決內容,否則另須繳交每日五十萬歐元的罰款。


  這起控告 Google 的訴訟是由比利時出版集團 Copiepresse 所提起的,該集團代表比利時境內多家法語及德語報社,亦為一管理比利時法語及德語媒體著作權的專門機構。

相關連結
※ 比利時法院要求Google移除新聞轉載連結, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=588&no=64&tp=1 (最後瀏覽日:2026/01/01)
引註此篇文章
你可能還會想看
歐盟執委會提出醫藥品管理整體配套方案,保障歐盟境內大眾用藥安全

  為確保歐洲民眾於健康醫療方面之利益,歐洲製藥工業協會聯合會(European Federal Pharnaceutical Industrial Association;簡稱EFPIA)於2009年2月17日,向歐洲議會(European Parliament)提出建議,並敦促其應儘速通過歐盟執委會(European Commission)於去年年底所提出一項關於醫藥品安全、創新與易近用性之議案。而一位業界代表Günter Verheugen於當(17)日會面後指出:「此次會面,主要是希望能就新近執委會所提交之醫藥品管理整體配套方案(Pharmaceutical Package),進行初步意見之交換與討論」。   由於保障歐盟境內民眾之健康安全,實乃歐盟決策者(Decision-makers)所應掮負之重要責任,故EFPIA總幹事Brian Ager於此次會面交流之前,亦曾高聲向歐洲議會與各會員國家呼籲,應優先將病患安全(Patient Safety)議題納入考量,並採取果斷之行動;同時,其也指明,歐洲醫藥各界為尋求各種可能落實之方法,先前早已經歷過各個階段,並遲延了決策做成之時機;故,此次會面,除要為執委會提案之審查,奠定啟動之基外,亦盼能再次集聚並挹注歐洲醫藥各界之能量,於保護歐洲人民健康安全相關之行動當中。   關於歐盟執委會於去(2008)年底所提出之議案,由於其中有多項內容對歐洲醫藥各界之影響實廣且深;因此,該項提案目前業已廣泛地受到EFPIA與業者之重視。此外,就此項醫藥品管理整體配套方案中擬採行之具體立法規範措施,實包含如後3個面向:首先,是欲透過規範擬提昇藥物警戒(Pharmacovigilance)方法之現代化;其次,強化管制規範以減少假藥滲入歐洲整體醫藥品供應鏈之機會;最後,則是要要提供高品質之健康與醫藥品相關資訊給有需要之病患或大眾近用(Access)等。   由此可知,未來歐盟整體醫藥品管理立法方向,將分由3個不同之角度出發;並同時朝「改善歐洲大眾用藥安全」之目標前進;不過,在進一步進行條文化之前,前述由執委會所提出之醫藥品管理整體配套方案,將會先交由歐洲議會與歐盟理事會官員共同進行初步之討論。

EDPS發布「評估限制隱私權和個人資料保護基本權利措施之比例指引」

  歐盟資料保護監督機關(European Data Protection Supervisor, EDPS)於2019年12月19日發布「評估限制隱私權和個人資料保護基本權利措施之比例指引」(EDPS Guidelines on assessing the proportionality of measures that limit the fundamental rights to privacy and to the protection of personal data),旨在協助決策者更易於進行隱私友善(privacy-friendly)之決策,評估其所擬議之措施是否符合「歐盟基本權利憲章」(Charter of Fundamental Rights of the European Union)關於隱私權和個人資料之保護。   該指引分為三大部分,首先說明指引的目的與如何使用;第二部分為法律說明,依據歐盟基本權利憲章第8條所保護個人資料的基本權利,並非絕對之權利,得於符合憲章第52條(1)之規定下加以限制,因此涉及處理個人資料的任何擬議措施,應進行比例檢驗;指引的第三部份則具體說明決策者應如何評估擬議措施之必要性和比例性之兩階段檢驗: 必要性檢驗(necessity test) (1) 步驟1:初步對於擬議措施與目的為詳細的事實描述(detailed factual description)。 (2) 步驟2:確定擬議措施是否限制隱私保護或其他權利。 (3) 步驟3:定義擬議措施之目的(objective of the measure),評估其必要性。 (4) 步驟4:特定領域的必要性測試,尤其是該措施應有效(effective)且侵害最小(the least intrusive)。   若前述評估認為符合必要性,則接續比例性檢驗,透過以下4步驟評估:  比例性檢驗(proportionality test) (1) 步驟1:評估目的正當性(legitimacy),擬議措施是否滿足並達到該目的。 (2) 步驟2:擬議措施對隱私和資料保護基本權的範圍、程度與強度(scope, extent and intensity)之影響評估。 (3) 步驟3:繼續進行擬議措施之公平對等評估(fair balance evaluation)。 (4) 步驟4:分析有關擬議措施比例之結果。   科技時代的決策者在立法和政策擬定時,面臨的問題愈趨複雜,需要全面性評估,擬議措施限制應符合歐盟法規,且具必要性並合於比例,隱私保護更是關鍵,參酌該指引搭配EDPS於2017年發布之「必要性工具包」(Necessity Toolkit),將使決策者所做出的決策充分保護基本權利。

瑞士新修正專利法進一步釐清研究、試驗免責範圍

  近幾年,製藥領域專利權效力的範圍及例外空間何在,引起廣泛討論,為發展製藥產業,諸多先進國家紛紛修改其專利法,擴大專利權例外範圍,使研發工作更易進行,以爭取跨國藥廠研發委外之機會。例如歐盟2004年修正通過的第2004/27指令,即對學名藥的試驗免責予以明文規定,而歐盟各會員國在將該指令內容落實為內國法的過程中,則有不少國家進一步擴大該指令例外規定的適用範圍。   瑞士雖非歐盟會員國,不過其在化學及製藥領域擁有世界一流的領先技術,因此瑞士也特別注意法規範面對於技術研發與產業發展之影響,並在近幾年積極展開類似的修法工作,瑞士新修正的專利法所規定的研究或試驗免責範圍,更進一步釐清農業領域使用受保護之生物物質之疑義,值得參考。   瑞士新修正專利法第9條規定,專利權效力不及於:(1)於私領域基於非商業目的之行為;(2)基於實驗與研究目的,為針對發明客體及其可能之應用獲取新知識所進行之行為,特別是與該發明客體有關之所有科學研究,均為容許空間;(3)為就某一藥品於瑞士取得上市許可,或於其他有類似藥品上市管制的國家取得上市許可所進行之必要行為;(4)為於教學機構中教學之目的而使用發明;(5)為進行植物品種之選育、發現或開發,而使用生物物質之行為;(6)在農業領域,出於偶然或因技術上不可避免而獲得生物物質。   上述新規定自2008年7月1日生效,隨著專利法對研究例外範圍的進一步釐清,瑞士的法規環境更具有發展生技研發服務的吸引力與國際競爭力。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP