論數位環境下個人資料保護法制之發展與難題-以「 數位足跡」之評價為核心

刊登期別
第24卷,第4期,2012年4月
 

※ 論數位環境下個人資料保護法制之發展與難題-以「 數位足跡」之評價為核心, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5883&no=64&tp=1 (最後瀏覽日:2026/02/01)
引註此篇文章
你可能還會想看
透過澳洲eBay交易須納10%商品及服務稅

  澳洲政府規定進行交易必須繳納 10% 的商品及服務稅 (Goods and Services Tax) ,透過澳洲 eBay 所進行的交易亦然。然而澳洲 eBay 業者並未修改其服務條款,強制賣方明列成功得標價須課徵 10% 稅款之資訊,因此許多得標者抱怨他們未被告知必須多付 10% 的稅,亦有些賣家抱怨其他賣家因未將價格加上 10% 的稅款,所以造成商品價格較便宜的假象。為杜絕前述問題,澳洲 eBay 已修改其服務條款,因此,自 6 月 13 日起澳洲 eBay 賣家須將 10% 的商品及服務稅納入交易金額或立即購買價 (Buy It Now price) 中。

越南公布關於電子身份識別和驗證的新法令草案

  越南公共安全部(The Ministry of Public Security)於 2022 年 2 月 2 日發布了一份關於提供電子身分識別和認證的法令草案。該法令草案訂定之目的係為電子識別和認證服務的管理、提供與使用奠定其法律基礎。   隨著網路與電子交易日漸流行,尤其在COVID-19疫情期間,驗證與識別交易之人顯得格外重要。在越南,雖然在眾多的法律與規範下一般性地承認電子交易的有效性,但在實務上,僅有數位簽章所進行之交易才被越南當局廣泛接受且認定其有效性。然而,對於個人而言,註冊數位簽章可能複雜、成本高且耗時,故根據法令草案,越南公共安全部提議將電子身份作為個人在電子交易中識別身分的一種更簡單的方式。   以下為此次草案之主要重點: 一、根據法令草案,隨著安全性和可靠性的等級提升,電子身分被分為從一級到四級的四個不同級別。第一級為從註冊者獲取數位資訊;第二級除了符合第一級以外,同時直接或線上檢查註冊者提供的個人資訊與政府當局出具的文件副本是否相符;第三級除了符合第二級外,透過直接核對公民身分證、與公民身分證電子連接以及與國家人口數據庫連接藉此蒐集數位資訊;第四級除了符合第三級以外,註冊者即時於線上或是親自現身。 二、除非法律另有規定,服務提供商可以規定其服務所需的電子身分級別。當設置了級別並且客戶已經提供了相關的電子身分時,服務提供商不能要求客戶提供進一步的資訊。 三、雖然法令非具有強制性,但鼓勵公司使用電子身分來驗證電子交易中的用戶與客戶。 四、該法令草案規定提供電子身分識別和驗證服務的公司需取得相關執照之需求,且該法令草案還規範了公司獲取、交換有關電子身分識別和驗證資訊的平台。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

稻米基因定序大功告成,有助解決全球糧食問題

  由十個國家的科學家共同努力完成的「國際水稻基因組定序計畫( IRGSP )」,其研究成果刊登於最新一期的 Nature 期刊。科學家們共同解讀水稻 12 條染色體的基因密碼,未來將根據這些密碼來控制水稻的生長和結穗,可望有助解決全球糧食問題。   依聯合國統計資料顯示,水稻是全球人口 20% 的食物能量來源,而在全球人口持續擴增之情況下, 2025 年必須提高 30% 的水稻產量,才能擁有足夠糧食。   自1998 年起,本計畫即在日本主導之下,與中華民國、韓國、英國、加拿大、美國、巴西、印度、法國與中國等國之定序實驗室進行分工、共享,定序後的 DNA 序列將放在公開序列資料庫,供研究人員使用;而本計畫已在 2002 年底完成草圖,並陸續完成彌補空隙與基因註解工作。本計畫之成果於近幾年來,已陸續協助辨識數個影響重要農藝性狀的基因,例如,影響植物生長勢、提高水稻產量的基因、改變水稻光週期、使優良栽培種得以擴展種植面積的基因、控制植株高度的基因等。  水稻基因組定序工作之完成宣告後基因組時代的正式來臨,而完成此一世紀任務之際,善用相關經驗與新知,以投入水稻的深入研究工作,將能台灣水稻及其他作物的遺傳育種研究提供實際幫助。

TOP