美國國家標準技術局公布聯邦各部會技術研發成果轉化計畫

  美國國家標準技術局(the National Institute of Standards and Technology,NIST) 建立網路專頁,提出聯邦各部會所研發技術的移轉計畫報告,揭示各部會具體執行白宮在去(2011)年10月28日所發布的總統備忘錄(Presidential Memorandum),要求各聯邦實驗室進行技術研發並提高移轉給私部門之比例,以使政府投資之研發成果可以供大眾市場所用,以進一步加速經濟成長與提昇美國產業競爭力。

 

  觀察白宮所發布的政策文件指出,聯邦政府將創新技術研發,視為刺激經濟的一個重要工具,而有效的技術移轉又是成功的技術研發的重要驅動力,故歐巴馬政府啟動美國計畫(Startup America Initiative)將政府研發技術的移轉作為重要支柱之一,並預計於5年內達成具體成績。

 

  於NIST網頁公布之13個聯邦部會所提出之執行計畫,包括各機關自訂目標與評量標準,以評估刺激技術移轉計畫之成效。而作為美國產業技術研發與標準制訂之主要推動機構,NIST的技術移轉計畫將調整技術移轉的定義與內涵,俾更為精確地反應和評估廣泛的技術研發活動。未來NIST將擴張各項衡量指標,如標準參考物質和數據(Standard Reference Materials and Data)、專利授權、共同研究等的追蹤範圍,此外包括軟體下載、研究人員、新創公司等亦納入新的衡量指標範圍之內。同時在完善技術移轉活動追蹤機制方面,NIST將建立內部人員參與私部門統一標準制訂委員會之資料庫。

 

  包括NIST在內以及美國商業部與其他各主要進行產業技術研發的聯邦部會之技術移轉計畫,揭示了技術移轉在美國技術研發活動週期中的重要性,具體執行、評估之方式,可自NIST專頁進行下載、分析並作為政策規劃之參考。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國國家標準技術局公布聯邦各部會技術研發成果轉化計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5907&no=67&tp=1 (最後瀏覽日:2025/12/02)
引註此篇文章
你可能還會想看
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

既有建築改善翻新措施─德國政策參考

既有建築改善翻新措施─德國政策參考 科技法律研究所 2013年07月11日 壹、事件摘要   內政部於6月20日公布資訊指出,我國為達成環境永續發展之目標,於1999年開始推行綠建築標章評估系統,迄今已有3,943件新建或既有建築,取得綠建築標章或候選綠建築證書,每年皆可有效節水與節電;同時,自2003年起,針對既有中央辦公廳舍及國立大專院校所辦理的改善翻新,亦具有顯著的節能減碳成果。 貳、重點說明   為因應全球暖化與氣候變遷問題,我國針對建築部門推動許多兼顧節能減碳與生態保護的綠建築政策。首先,內政部在1999年針對新建建築之規劃設計,訂定綠建築標章評估系統。行政院另於2001年3月核定「綠建築推動方案」,率先實施對公部門新建及既有建築之綠化工作,內政部並依據該方案實施方針第7條,推動「綠廳舍暨學校改善補助計畫」。接著,為了強化民間產業投入綠建築,行政院再於2008年1月核定「生態城市綠建築推動方案」,依據該方案實施方針第11條「辦理綠建築更新診斷與改造計畫」,繼續推動既有中央辦公廳舍及國立大專院校建築物之改善翻新。此外,為鼓勵民間既有建築參與綠建築改善,並於100年1月訂定內政部獎勵民間綠建築示範作業要點。   由上述政策發展可以看出,我國既有建築之改善翻新,乃循公部門先帶頭示範,再輔以對民間建築給予獎勵補助,與歐美等先進國家政策推動模式一致。 參、事件評析   根據統計,我國既有建築約佔全國建築總量97%,這些早期建造的建築物,於設計規劃之初皆未納入綠建築之概念。因此,雖然許多既有建築仍舊堪用,但建築本身卻普遍存在著高耗能問題。這使得推動既有建築進行改善翻新,提升其能源效率,成為一重要議題。而依內政部公布之資訊,公部門既有建築改善翻新獲得卓越之成效,確實令人欣喜。然而,公部門既有建築畢竟仍屬少數,故如何推動民間既有建築進行改善翻新,會是我國落實綠建築政策的關鍵。在此,本文將介紹德國政府之相關政策,希望能供我國作參考。   在既有建築改善翻新政策中,德國政府同樣先要求公部門建築必須進行改善翻新,以逐年降低其能源消耗量。與此同時,德國政府也認知到有超過75%的既有建築,至今仍未進行改善翻新。因此德國交通、建築暨都市發展部(Bundesministerium für Verkehr, Bau und Stadtentwicklung, BMVBS,簡稱交通部)推出了降低二氧化碳排放的建築改善翻新方案,不僅給予補助,更與德國復興信貸銀行(Kreditanstalt für Wiederaufbau, KfW)合作,提供改善翻新的低利率貸款。   今年6月1日,為了促進民眾積極採取「具體的」改善翻新行動,交通部與德國聯邦經濟暨技術部(Bundesministerium für Wirtschaft und Technologie, BMWi,簡稱經濟部)共同推出建築節能改善翻新的線上評估服務。讓民眾即使在家中,也可以進行節能與節省成本的行動。 該線上評估服務分為三大步驟,首先,必須輸入建築物的狀態。接著,便可以選擇欲改善翻新的項目及措施。最後,系統會產生整體改善翻新的結果,包括改善翻新前後的能源需求狀態、二氧化碳排放量,以及改善翻新所需經費,並提供聯邦、邦政府財政補助及KfW貸款方案的連結。   德國政府希望藉此向民眾傳達改善翻新的好處,在於節能、節省長期的能源成本,並增加建築物之價值。儘管德國政府在此線上評估服務網站上表明,評估結果僅供參考,並無法取代專業能源顧問的具體評估建議。然而,事先透過簡單、便利的線上評估,不僅增加民眾對於既有建築改善翻新的瞭解及興趣,更是進一步驅動民眾尋求專業評估的動力。   由此可知,節能減碳若要具體落實,全面性的規劃絕對是必要的。我國若能以德國的政策為借鏡,給予民眾更多關於既有建築改善翻新的協助,提供更多資訊。相信可以鼓勵更多民眾自主投入既有建築節能之行列,使我國綠建築政策獲得全面性的落實。

政府採購電腦 強制採雙作業系統

  過去中信局的標案,大多以提供兩種不同的作業系統,供政府機關及學校等公務單位選購,但因大多數的政府機關不瞭解辦公室的電腦是否與 Linux 相容,加上缺乏資訊專業人員,最後絕大多數仍以採購視窗作業系統為主。   由於今年立法院在審查預算時,加了附帶決議,要政府機關採購微軟產品的金額要減少 25% ,故中信局最近在執行政府資訊產品採購時,首度強制投標的個人電腦業者,要通過「 Linux 軟硬體相容性基本驗證規範」,從第 11 標開始(案號 LP5 940025 ),明訂投標的廠商要提供符合「基本中文化實用性測試應用規範」(具備瀏覽器、電子郵件、文書處理等功能)的 Linux 作業系統,並通過「 Linux 軟硬體相容性基本驗證規範」。換言之,未來桌上型電腦出貨都必須採雙作業系統( Linux 與 Windows 並存),可望有效帶動 Linux 相關軟硬體的商機。   中信局指出,第 11 標從 5 月 25 日 公告後,到 9 月底結束,交貨期從 6 月中旬開始,總計今年要採購的 10 萬台到 12 萬台桌上型電腦,都必須是雙作業系統。也就是使用者一打開電腦,會出現 Linux 或 window 作業系統,若要讓使用者選擇 Linux 作業系統,業者得強化教育訓練,同時在後續維修服務也要相當用心。預料各公務單位將因此提高桌上型電腦採用 Linux 的意願,對 Linux 作業系統及相關應用軟體的商機,起相當大的帶動作用。

日本文化廳發布《人工智慧著作權檢核清單和指引》

日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。

TOP