美國近期可能開放進口中國大陸將已處理或煮熟的家禽類產品至美國。美國農業部(The U.S. Department of Agriculture)表示中國若將處理過之家禽類產品出口至美國販售,前提是必須遵循美國相關食品進口規範完成妥當的進口申報程序,並且在中國所提出之出口健康認證(export health certificate)中,證明該家禽類產品有確實在適當的溫度等處理過程中進行妥善處理。 美國農業部食品安全及監督服務部門(Food Safety and Inspection Service, 簡稱FSIS)之相關負責官員於2014年6月初在美國國會中國事務執行委員會(Congressional-Executive Commission on China, 簡稱CECC)所舉行的聽證會(hearing)中指出,中國已經將出口健康認證提交給FSIS及動物植物健康監督服務(Animal and Plant Health Inspection Service, 簡稱APHIS)進行審核。在聽證會中,最讓美國負責官員顧慮是否通過開放中國進口家禽類產品之因素在於中國鬆懈的法律規範及其政府的貪汙問題,對於所出具的出口健康認證報告之確實性亦有待考證。美國負責的相關人員建議,中國大陸在產品製造過程的透明度是對於出口健康認證最重要的部分,能夠說服美國相信中國大陸對於食品及藥物安全在管理上的謹慎。 另外一個需要注意的地方在於食品原產地之標示(country-of-origin labeling,簡稱COOL)。在美國食品市場中,若食品大部分的成分來源是在美國境內處理的,則該食品會有「美國產品」(product of U.S.A.)之標示,但對於何謂「美國境內處理的食物」仍沒有明確的標準,對於國外進口美國的產品,在美國經過重新包裝或加工,則依據COOL相關規範,應標示該產品為「美國產品」。因此,在此條件下,若美國允許中國進口經過中國當局出口健康認證的家禽類產品,若進口至美國後,又在美國境內經過重新加工或是包裝,則該食品之COOL將會顯示該食品來自美國,而非出產自中國大陸。這樣的結果恐將會讓美國食品標示出現不完全精確之結果,也會讓消費者開始顧慮其購買的食品來源的顧慮及食品安全的可信度,美國將必須對進口食品的安全管控上建立更嚴謹的規範措施。
聯邦通訊委員會禁止無線麥克風使用700MHz頻段美國聯邦通訊委員會(Federal Communication Commission, FCC)於今年1月15日頒佈一項新命令,禁止進一步經銷或出售使用700MHz頻段(698-806MHz)的無線麥克風等設備。700MHz頻段在2009年6月12日數位電視轉換完成後,已不再供電視台廣播使用。FCC表示此項命令的頒佈,目的在清空700MHz頻段,以避免上述設備對目前使用此一頻段的公共安全通訊(如警察、消防及緊急服務)與商用無線通訊服務,產生妨害性干擾。上述設備所使用之頻段,先前已由主要無線通訊業者以約200億美元標得執照。 FCC頒佈此項新命令,將影響百老匯劇院、運動聯盟及其他公眾娛樂團體目前利用700MHz頻段經營的無線麥克風系統。在新命令頒佈前,上述團體曾表示希望維持繼續使用部份700MHz頻段,並表示其使用將不會對新的使用者造成干擾,惟FCC並未採納其意見。 為確保目前使用700MHz頻段免執照設備的個人或團體,能有充分時間轉換至適當之替代頻段,FCC將允許其繼續使用至今年6月12日止。同時,對於先前已購買使用700MHz頻段設備之消費者,亦提出相關計畫以提供協助。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
聯合國人權高級專員辦公室發布《數位時代隱私權》調查報告聯合國人權高級專員辦公室(Office of the United Nations High Commissioner for Human Rights, OHCHR)於2021年9月15日發布《數位時代隱私權》(The Right to Privacy in The Digital Age)調查報告,分析各種人工智慧技術,例如側寫(profiling)、自動化決策及機器學習,將如何影響人民之隱私或其他權利,包括健康權、教育權、行動自由、言論自由或集會結社自由等,並提出對國家與企業應如何因應之具體建議。 一、針對國家與企業使用人工智慧之共同建議:在整個人工智慧系統生命週期中,包括設計、開發、部署、銷售、取得(obtain)或運營,應定期進行全面的人權影響評估(comprehensive human rights impact assessments),提高系統使用透明度與可解釋性,並應充分通知公眾與受影響之個人其正在使用人工智慧進行決策。 二、針對國家使用人工智慧之建議:應確保所有人工智慧的使用符合人權,明確禁止並停止販售不符合國際人權法運作之人工智慧應用程序。在證明使用該人工智慧系統能遵守隱私及資料保護標準,且不存在重大準確性問題及產生歧視影響之前,應暫停在公共場所使用遠端生物識別技術。並盡速立法及建立監管框架,以充分預防和減輕使用人工智慧可能造成不利人權的影響,以及確保在侵犯人權時能夠有相關之補救措施。 三、針對企業使用人工智慧之建議:應盡力履行維護人權之責任,建議實施商業與人權指導原則(Guiding Principles on Business and Human Rights),並打擊(combat)人工智慧系統開發、銷售或運營相關的歧視,進行系統評估與監測,以及設計有效的申訴機制。