App已成為多數人每日不可或缺之夥伴,其應用層面廣及食、衣、住、行、育、樂等生活領域;不過用戶可能多未意識到,在App程式的下載及安裝過程中,開發供應商會記錄或接觸使用者手機中如電話簿、照片、影音檔案、簡訊、密碼記錄等其他資訊之可能。根據華爾街日報報導,56%的應用程式在用戶不知情的情況下,手機ID會發送給廠商;47%的應用程式會透露用戶的所處位置,使得個人隱私蕩然無存。
加拿大當地的隱私法規要求企業在追求創新及企業精神時必須將隱私保護納入考量;而在行動裝置應用環境中,無論是開發商、服務供應商、應用平台或是廣告商,只要有接觸用戶個人資訊之可能,就有遵守法規之義務。但考量App這樣一個嶄新又快速發展的科技生態,在實踐隱私保護精神之初可能會面臨到新的衝擊與挑戰。因此,加拿大隱私權主管機關(Office of the Privacy Commissioner of Canada,簡稱OPC)乃會同加拿大境內的阿爾伯特及不列顛哥倫比亞兩省各自之地方主管機關(其分別為Office of the Information & Privacy Commissioner of Alberta及Office of the Information & Privacy Commissioner for British Columbia)撰寫指導文件,希望能提供當地App開發供應商建議方案。
該項建議方案促使行動軟體開發供應商在設計與開發App應用程式時必須顧及使用者隱私之保護,並提供協助方式與預防原則,提高使用者隱私受保護之程度;除必須使用清晰且易懂之方式告知用戶的個人資料將進行何種用途外,在使用者下載前亦應告知被蒐集之資料類別及原因、資料儲存位置或地點、資料分享之可能及其原因、資料保存之期限、及其他可能影響用戶隱私之事件;倘若廠商必須變更隱私政策與規定,則應使用明確易懂之方式事先通知所有使用者了解進行何項變更,以強化用戶隱私與個人資料保護意識。
英國衛生部(Department of Health and Social Care)於2018年10月23日發布基因檢測與保險自律行為準則(Code on genetic testing and insurance-A voluntary code of practice agreed between HM Government and the Association of British Insurers on the role of genetic testing in insurance),該準則係由英國政府及英國保險業者協會(Association of British Insurers, ABI)共同制定,旨在取代先前的「基因與保險之協定與延期實施」(Concordat and Moratorium on Genetics and Insurance)文件,並以更易於理解的方式呈現原「基因與保險之協定與延期實施」之內容。 準則中列出八項承諾,此八項承諾為ABI代表其成員議定: 承諾一:保險業者(Insurers)會公平對待要保人(applicants)。保險業者不會要求或迫使任何要保人進行預測性或診斷性基因檢測;若要保人已進行預測性基因檢測,保險業者亦不會對其作出差別待遇,除非有如下之情況。 承諾二:列入附錄一之疾病類型並超過以下金額之保單,保險業者始得要求要保人提供預測性基因檢測之結果: 人壽保險-500,000英鎊 /人。 重大疾病險-300,000英鎊 /人。 收入保障險-30,000英鎊 /年。 目前列入附錄一之類型僅有亨丁頓氏舞蹈症(Huntington’s disease)之人壽保險總額超過500,000英鎊之情形。 承諾三:保險業者不會要求要保人提供: 要保人或被保險人於承保期間所進行之預測性基因檢測結果。 非為要保人或被保險人本人(如要保人或被保險人血親)之預測性基因檢測結果。 於科學研究背景下獲得之要保人或被保險人預測性基因檢測結果。 承諾四:若保險業者基於承諾二之規定要求要保人提供預測性基因檢測結果,亦不會針對該結果制定過於苛刻(disproportionate)的條款或條件。 承諾五:保險業者須於要保人簽約前提供明確之訊息,以說明: 根據本準則,要保人在何種情況下必須或無須提供相關預測性基因檢測結果。 若要保人自願提供對其有利的預測性基因檢測結果,保險決策將如何被影響。 承諾六:若要保人基於意外或自願向保險業者提供預測性基因檢測結果,保險業者可考量要保人之利益調整保單內容;若檢測結果對要保人不利,除非符合承諾二之情形,否則保險業者將忽略該檢測結果。 承諾七:販售人壽保險、重大疾病或收入保障保險之保險業者將: 每年向ABI報告其遵守本準則之情況。 根據本準則問答部分之詳細資訊,建立投訴程序(complaints procedure)。 每年向ABI報告與本準則運作上相關之投訴情形。 承諾八:販售人壽保險、重大疾病或收入保障保險之保險業者將指定至少一名經培訓之基因核保人(Nominate Genetics Underwriter, NGU),負責與遺傳資訊(genetic information)及遵守本準則相關之事項,且NGU之人數應與業務規模成比例。
澳洲新南威爾斯政府將推動創新採購與擴大監理沙盒適用範圍澳洲經濟核心所在之新南威爾斯州(首府雪梨)於2016年11月30日提出新南威爾斯創新戰略(The NSW Innovation Strategy),嘗試整合政府公部門、營利組織、非營利組織、教育及研究機構、社群或個人共同面對新的經濟、社會、環保議題之挑戰,藉由投入新型態的公共投資(the new forms of public investment),協助發明與創新者得以將他們好的創意轉換為成功的商品與服務。此外,不僅要發展未來產業創造工作機會,更要為此預先儲備能夠發揮高科技發展所需技能之人力資源。 基此,新南威爾斯政府的創新戰略將著重於下列四項目標的達成: (1)政府成為創新領導者(Government as an innovation leader) (2)促進和運用研究發展(Fostering and leveraging research and development) (3)未來技能養成(Skills for the future) (4)創業者的家園(A home for entrepreneurs) 同時,具體執行方法,在機制面上首先將啟動新南威爾斯創新窗口服務(NSW Innovation Concierge Service),與澳洲跨部會創新委員會協調運作,以確保重要意見並未遺漏,並且讓專家及決策者可考量到各種可能。 而其他執行方法中,在法制面上影響較大者是在澳洲政府推動金融科技之監理沙盒制度的基礎上,嘗試擴大適用範圍不限於金融業之監理法令,可及於創新產業之法令試作。另外,也將針對採購規範進行修正,使政府與民間可以更便於運用政府採購促進產業發展與扶助中小企業,同時滿足政府提供公共服務之需求。更甚者,將推動對創新商品及服務的政府採購,藉由提供一定市場需求,穩定新創科技及業者之發展。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。