美國於2011年2月份啟動「更佳建築倡議」(Better Building Initiative)計劃,期在2020年達成降低工業和商業之能源密集度百分之二十的目標。展望2013年,美國能源部於2012年底發布該倡議之進度報告(Progress Report)。報告開宗明義指出若干有礙建築能源效率之投資障礙,擬如下: (1) 尚缺少能源效率投資成本節省之實證數據 (2) 尚缺少潛在市場和技術解決方案之相關資訊 (3) 能源效率作為商業最佳實踐尚未普遍被接受。基此,能源部致力於發展以下策略: (1) 創新產業研發 (2)促進能源效率投資 (3) 培育清潔能源之技術人員 (4) 強化聯邦公部門示範作用。
在創新產業研發面向,能源部成立「更佳建築聯盟」(Better Buildings Alliance),此乃結合零售、食品、商業房地產、醫療照護、高等教育產業,預計於2013年將擴大到州和地方層級;聯盟成員將承諾設定節能目標,擇定高效率之建築科技進行採購。其次,在促進能源效率投資上,報告指出,因市場尚缺乏相關數據資訊(data information),難就能源效率之市場價值(value)進行驗證;將建立起相關機制,作為未來融資和建築物改善的基礎。最後,在強化公部門示範作用上,透過聯邦能源管理計畫(Federal Energy Management Program, FEMP)和節能績效契約(Energy Savings Performance Contract, ESPC),持續強化能源技術服務公司(Energy Service Companies, ESCO)進行聯邦建築物節能效益之提升和擔保。
綜上,可得知建築能源效率數據資訊之欠缺乃目前美國能源部在推展「更佳建築倡議」面臨的最大問題。查美國國會於2012年12月初通過「美國製造業能源技術修正法案」(American Energy Manufacturing Technical Corrections Act),就前述聯邦能源管理計畫(FEMP)和資料蒐集標準(Data Collection)進行規範,相關法制政策趨勢殊值注意。
當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。 在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。
新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。
英國上議院對於自動駕駛車運作環境及應備法制規範展開公眾諮詢英國上議院科學及科技委員會(The House of Lords, Science and Technology Committee)於2016年9月15日對於自動駕駛車(Autonomous Vehicles)的運作環境與應備法制規範展開公眾諮詢,委員會邀請利害相關的個人和團體提交書面文件來回應此公眾諮詢。書面意見提交的最後期限是2016年10月26日。 英國政府一向對發展自動駕駛車的潛力十分積極,其在2015年建立了一個新的聯合政策單位-聯網與自動駕駛車中心(Centre for Connected and Autonomous Vehicles, CCAV),並在2015年財政預算案中提供CCAV一億英鎊的智慧行動研發基金聚焦於無人駕駛車技術。CCAV還公佈現有與車輛交通相關立法的調查報告,其結論是:「英國現有的法律架構和管制框架並不構成自動駕駛車在公路上測試的阻礙。」此外,CCAV還出版了無人駕駛汽車測試的實務守則。在2016年英國女王的演講中,政府宣布將制訂現代運輸法案(Modern Transport Bill):「確保英國處在最新運輸科技的尖端,包括自動駕駛和電動車。」 2016年7月,CCAV舉辦了英國的聯網與自動駕駛車的測試生態系統的公眾諮詢,以及於2016年9月發佈個人和企業對於在英國使用自動駕駛車技術和先進輔助駕駛系統的公眾意見徵詢。 本次公眾諮詢將調查政府所採取的行動是否合適,是否有兼顧到經濟機會和潛在公共利益。在影響與效益方面,本次諮詢將收集自動駕駛車的市場規模與潛在用途、對用戶的益處與壞處、自動駕駛車對不同產業的潛在衝擊以及公眾對於自動駕駛車的態度等相關證據。在研究與開發的方面,自動駕駛車目前的示範計畫與規模是否足夠、政府是否有挹注足夠的研發資金、政府研發成果的績效以及目前研發環境是否對中小企業有利等面向,找尋傳統道路車輛是否有和自動駕駛車輛並存的過渡轉型方法。最後,布署自動駕駛車是否需要提升軟硬體基礎設施、政府是否有建立資料與網路安全的方法、是否需要進一步的修訂自動駕駛車相關法規、演算法及人工智慧是否有任何道德問題、教育體系是否能提供自動駕駛車相關技能、政府制訂策略的廣度;以及退出歐盟是否對英國研發自動駕駛車產業有不利之影響;而英國政府是否應在短期內做出保護該產業之相關措施,或是待Brexit條款協商完成之後再視情況決定等等。 上述議題在書面意見徵集完成之後,將於2016年11月召開公聽會再度徵集更廣泛的相關意見,科學及科技委員會希望能在2017年初做成調查報告並提交給國會,在得到政府回應之後,可能將進行辯論以決定未來英國自動駕駛車產業的發展方向。
美國《確保關鍵礦產安全可靠供應的聯邦戰略》《確保關鍵礦產安全可靠供應的聯邦戰略》(A Federal Strategy to Ensure Secure and Reliable Supplies of Critical Minerals),為美國商務部於2019年6月4日發布的一項國家層級礦產行動計劃,制定依據為美國總統於2017年12月20日發布的13817號行政命令,戰略目標是強化美國製造業與國防工業及礦產供應鏈彈性,推進研究開發工作,減少美國對中國大陸等外國實體的關鍵礦產資源依賴。 美國商務部表示,確保關鍵礦產供應穩定及供應鏈彈性,對於美國經濟繁榮與國防安全至關重要,過去美國過分依賴外國關鍵礦產資源及供應鏈,導致經濟和軍事出現戰略性弱點。據統計共有35種與美國經濟與國家安全相關的礦產品,包括鈾、鈦和稀土元素,為智慧手機、飛機、電腦和GPS導航系統及風力發動機、節能照明與混合動力汽車電池等綠色科技產品的必要組成。35種關鍵礦產中有31種選擇進口,其中更有14種關鍵礦產是完全依賴國外進口。 《確保關鍵礦產安全可靠供應的聯邦戰略》提出6項行動綱領包括:(1)推動關鍵礦產供應鏈的轉型研究、開發與部署;(2)加強美國關鍵礦產供應鏈和國防工業基地;(3)強化與關鍵礦產相關的國際貿易合作;(4)提升對國內關鍵礦產資源知識;(5)提升在美國聯邦土地上獲得關鍵礦產資源的機會,並簡化授權開採的審查程序;(6)增加美國關鍵礦產資源勞動力等。