美國第二巡迴上訴法院於二月初判決知名品牌Ralph Lauren與美國馬球協會(U.S. Polo Association ) 自1984年開始爭執不休的馬球圖樣使用爭議由Ralph Lauren勝出,馬球協會不得使用polo圖樣於香氛與美妝產品類別,確認了2012年3月地方法院禁止馬球協會使用圖樣的判決。
自1890年以來主管美國馬球運動的美國馬球協會與Ralph Lauren的馬球員圖像恩怨可追溯回1984年,當時馬球協會以確認之訴贏得在未造成與Ralph Lauren知名的Polo品牌混淆的狀況下,馬球協會得製造授權商品。
在2012年的判決中,地方法院禁止美國馬球協會使用馬球員圖樣與POLO字樣在任何香水、美妝產品類別上,同時要求USPTO拒絕馬球協會部分的商標申請,該案法官裁決與香氛產品有關的圖樣侵害Ralph Lauren的商標權利,構成不公平競爭,同時也造成設計師與被授權人無法回復的損害。
馬球協會的律師團在上訴理由中主張:馬球員圖樣符合先前使用,同時,因為過往的判決賦予協會得使用該圖樣在服裝類產品,表示也可以使用在香氛類別,因為服裝跟香氛產品的市場是很相近的,但前述主張並不為第二巡迴上訴法院陪審團所認同。
美國政府於今年(2012年)02月23日提出「消費者隱私保護法案」(Consumer Privacy Bill of Rights),總統歐巴馬認為:「為保護美國消費者網路上的個人資訊,清楚的法律已刻不容緩。電子商務的成功,必須讓消費者感到安全…,保護消費者的資訊能確保網路交易平台的成長」。 白宮提出的法案中明確點出下列幾項值得關注的議題:1、獨立控制:消費者有權了解自身資料被誰蒐集,以及他們如何使用這些資料。2、透明度:消費者能容易的了解隱私及資訊安全的訊息。3、考慮內文:消費者有權期待蒐集個人資料的組織,處理個人資料的方式能提供消費者知悉並且言行一致。4、安全:消費者的個人資料應受到安全可信任的保護。5、近用與正確性:消費者有權查詢與更正個人資料。5、集中蒐集:企業僅能有限度的蒐集消費者資訊。6、責任:消費者有權要求蒐集資訊的公司妥善保管個人資料並遵循「消費者隱私保護法案」。 美國商務部及資訊管理局會將在未來幾周進行細部的規劃,並尋求技術專家、業界、學者的意見,商務部將研擬相關具體可行的做法。
英國交通運輸部公布「交通運輸之未來」公眾諮詢文件英國交通運輸部及聯網與自動駕駛車中心(Centre for Connected and Autonomous Vehicles, CCAV)於2018年7月30日公布「交通運輸之未來」公眾諮詢文件(Future of Mobility-Call for Evidence),提及未來之交通運輸趨勢: (1) 更加潔淨之交通運輸工具(cleaner transport):因電池價格下降、電動車技術之改善、開發替代燃料等因素,可減少現有交通工具之碳排放,並作為後續新技術研發基礎。英國政府已明確表示預計於2040年前讓新車及貨車實現零碳排目標。 (2) 自動化(automation):因感測器技術進步以及演算法和人工智慧之快速發展,使交通運輸自動化程度大幅提升。英國政府預計2021年可讓完全自動化駕駛車輛於道路行駛。 (3) 資料及聯結(data and connectivity):未來聯網車輛間可互聯,亦可與交通號誌互聯,透過即時路況告知,以避免道路壅塞。 (4) 新模式(new modes):英國已使用無人機於緊急服務或基礎設施勘查,未來可能有垂直起降之車輛出現,而計程車及公車之分別亦逐漸模糊。 (5) 交通運輸共享化(shared mobility):利用共享車輛可降低交通壅塞及廢氣排放,如公共自行車、商業化之車輛共乘。 (6) 不斷轉變的消費者態度(changing consumer attitudes):消費者已漸漸期待所有交通工具的預約叫車及支付,皆可透過手機進行,主管機關則應考量消費者需求,確保相關交通服務的利用。 (7) 新商業模型(new business models):未來交通運輸已有新商業模式出現,如公共運輸行動服務(Mobility as a Service)。 英國政府期望透過上述交通運輸變革,能帶來更安全、便利及潔淨之交通,並實現更好的生活品質。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。
淺論中國大陸專利間接侵權規範之爭議