2012年3月Google將世界各地總共60個相異的個人資料隱私權政策統一後,即受到歐盟個人資料保護機構「第29條工作小組」的關注,該小組認為Google修訂後的個人資料隱私權政策違反歐洲資料保護指令(European Data Protection Directive (95/46/CE)),將難以讓使用者清楚知悉其個人資料可能被利用、整合或保留的部分。同時,Google亦可能利用當事人不知情的情況下,大量利用使用者個人資料。因此,2012年10月歐盟要求Google在4個月內對該公司的個人資料隱私權政策未符歐盟規定者提出說明,惟至今Google仍無回應。因此,歐洲6個國家,包括法國、德國、英國、義大利、荷蘭及西班牙的個資監管機構,將聯合審視Google的個人資料隱私權政策是否違反各國的法律,並依據各國法律展開後續措施,如鉅額罰款等。法國之資訊自由國家委員會(Commission nationale de l'informatique et des libertés,簡稱CNIL)率先表示,若Google於4月11日前未改善其資料隱私權政策,法國將首先採取法律行動。然Google對此僅簡單回應,表示其資料隱私政策尊重歐盟的法律,且可以讓Google提供更簡單、更有效率的服務。
英國財政部於2018年10月29日宣布將不再採用二代民間融資(Private Finance 2,PF2)。 PF2是英國自1992年推行的民間融資提案(Private Finance Initiative, PFI)的進階版。PFI屬於「公私協力」(Public Private Partnerships)範疇,其概念為政府運用民間機構的管理能力及商業的專業知識,和民間機構簽訂PFI契約,先由民間機構興建、營運公共建設,政府再向民間機構購買該公共建設之公共服務。政府在民間機構營運公共建設後,依據雙方契約所訂之評估指標及規範,檢視民間機構之服務品質有無符合約定,再予以付款,倘未達到績效指標或資產無法提供服務時,則有扣款機制。 PFI在英國運作20多年,雖確實有效減輕政府財政負擔,但也有長期計劃缺乏彈性、私部門獲利太多、採購耗時等缺點。因此,英國於2011年對PFI進行改革,推出PF2。PF2有PFI制度及基本架構,但讓政府參股投入部分資金,成為投資者之一;簡化案件行政程序,從計畫啟動到選出最優申請人,原則不得超過18個月;要求民間機構披露公開資產報酬,提升透明度等。 PFI和PF2契約雖然已用於資助學校、醫院和其他基礎設施的建設,但此二模式的使用率近來已顯著下降,此可從英國雖修正PFI推出PF2,但PF2迄今僅使用了六次,以及目前的PFI及PF2契約,有86%是在2010年前簽立可證。此外,採用PFI或PF2契約後,如發生契約提前終止情形,機關須依約買回公共建設,導致仍須支付高額費用,凸顯PFI或PF2契約難以調整的不靈活性而飽受批評。又,預算責任辦公室(Office of Budget Responsibility)亦表示民間融資提案(private finance initiative)對政府的財政具有風險。 英國財政部已聽取前述各個關注,並且決定未來的施政規劃不再採用PF2 ,但財政部同時表示不會終止現有的PFI和PF2契約,會履行承諾完成履約,因為契約終止所生之高額補償,將使PFI或PF2不具「公帑節省價值」(Value for Money),故政府仍將繼續致力提高現有PFI契約的價值。 PFI起源於英國,此模式受不少國家效尤。而今英國宣布不再採用PFI的進階模式-PF2,此政策對PFI有無影響,以及英國政府未來是否會再規劃新的採購模式或公私協力措施以建設公共服務設施,相信將受到各國的關注。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
情理法難兼顧,人工生殖法再掀波瀾陸軍上尉連長孫吉祥殉職後,未婚妻李幸育終於順利取精,不過能否接受人工受孕則仍有變數。由於 目前人工生殖法草案尚未過關,法律上尚無明確規範,且由於此種案件勢將引發若干後續問題,情理法難以兼顧,故衛生署國民健康局長吳浚明表示,目前擬採取專案審查方式,於週一﹙ 9月13日﹚邀集律師、醫學倫理、婦女團體、不孕症代表等專家,共同討論是否同意李幸育進行人工受孕。 在正式同意人工受孕之前,如果有醫師私下協助進行,衛生署將得以「其醫療行為違反醫學倫理」為由﹙醫師法第二十五條﹚,依同法二十五條之一予以懲戒。至於衛生署長侯勝茂先前表示,要檢討人工生殖法草案之具體內容,放寬「不孕夫妻而且雙方健在」的限制,吳浚明則坦承,此項指示的難度很高,因為目前連草案都還在等待立法院審查,如果等草案過了再行修正,退案修正一來一往間,將耗費相當時日,更何況死後取精可否進行人工生殖之情形更屬複雜,預期難在短期之間獲得定論。
美國5G科技加速方案(5G FAST Plan)美國5G科技加速方案(Facilitate America’s Superiority in 5G Technology,簡稱5G FAST Plan)是美國聯邦通訊委員會(Federal Communications Commission,簡稱FCC)為激勵5G投資創新、強化美國5G技術優勢,於2018年9月28日所提出的方案,著重在5G三大發展面向包括:投入更多頻譜進入市場、基礎建設及政策升級、更新監管法規等。其中,美國5G科技加速方案(5G FAST Plan)針對過時法令的現代化,共提出五點更新方向,促進美國人的數位機遇與挑戰。 一、 恢復網路自由:為鼓勵投資和創新,確保網路的開放自由。FCC通過《恢復網路自由命令》,廢除網路中立性。 二、 One Touch Make Ready: FCC更新網路設備安裝到公用電線桿的規則,降低成本並加快5G傳輸部署。 三、 加速智慧財產權轉型:FCC修訂規則促進企業投資5G網路與服務。 四、 商業數據服務:為激勵對現代光纖網路建設的投資,FCC更新高速專用服務規則並提高費率。 五、 供應鏈完整性:禁止購買會威脅美國5G通訊網路及通訊供應鏈完整性的設備與服務。 另一方面,2019年4月12日,FCC主席Ajit Pai前往白宮與總統會談時,再次強調美國必須贏得第五代行動通訊技術競賽,主要有兩個關鍵原因:首先是提升國家競爭力,透過開發並部署5G技術等高薪工作,提升美國經濟水平,進而超越其他競爭國家;再者,發展5G將徹底改變人類的生活方式,從精準農業、智慧交通再到遠端醫療網路,包含農村在內的所有美國民眾,都將受益於這場5G數位革命。 FCC擬定的美國5G科技加速方案(5G FAST Plan),未來發展重點聚焦如下: 一、 釋出5G頻譜以供商業使用:FCC已在2019年1月完成第一次的5G頻譜拍賣,並進行第二次及2019年12月10日第三次的5G頻譜拍賣,開放競標3400兆赫茲,將會是美國歷史上最大的頻譜競標。 二、 簡化5G無線基礎建設審查:5G運作必須依靠小型基地台(Small Cell),FCC透過更新無線通訊基礎設施政策,簡化聯邦與地方對於小型基地台部署審查,加速推動5G無線網路服務覆蓋範圍。 三、 積極鼓勵光纖部署:5G不僅是無線技術,要將5G應用在無人機飛行,還需要更強大的光纖網路傳輸流量。FCC近來致力於鬆綁嚴厲的監管規定,希能逐步增加更多的光纖部署地點。 此外,為鞏固美國在國際的5G競爭實力、部署國家未來的5G基礎建設,FCC預計建立一規模達204億美元的農村數位機會基金,將高速頻寬拓展至美國農村地區多達400萬戶家庭及中小企業,5G技術將為美國帶來更多的經濟機會。FCC表示,從國際條約談判到急需的監管改革,美國政府將以多種方式推展5G願景,提升國家經濟及產業競爭力,改善人民生活並尋求全新的生活模式,為此美國必須贏得第五代行動通訊技術競賽。