Ofcom在今(2013)年3月公佈「2012年第四季電信與付費電視申訴報告書」(Telecoms and Pay TV Complaints Q4 2012),以履行2003年通信法(Communications Act 2003)第26條規定:Ofcom應公布通訊資訊與建議於消費者。是故,為維護消費者之權益,並促進市場競爭,Ofcom從2011年4月起每季公佈「電信申訴報告書」 (Telecoms Complaints);同年10月修訂為「電信與付費電視申訴報告書」(Telecoms and Pay Tv Complaints)。這份報告書不僅協助消費者選擇較好供應商,更意在促進業者服務品質,而從幾次報告書中顯示,業者們被投訴量確實持續下降,可見效果斐然。
Ofcom選擇市占率超過4%、且每月被投訴超過30次的市話、固網寬頻、行動通信服務(月租),與付費電視為調查對象,以維護統計信度。當消費者申訴具有綑綁式服務(bundled services)業者,則視其申訴是否涵蓋多種服務,以Sky同時具有電話、網路服務為例,當民眾申訴廣告不實後,則此申訴僅被記錄於網路服務。由於,民眾申訴範圍相當廣泛而難以統整,Ofcom僅向外界公布業者被投訴的次數,且有下述研究限制:
1.Ofcom僅蒐集本身受理的申訴數據,而其他組織、供應商所受理的,一概不納入報告書。
2.Ofcom雖力求數據的合理性,但不會檢驗消費者投訴的真實性。
3.當Ofcom倡導某些政策時(例如打及廣告不實),可能會導致某些業者申訴量提高。
在這次報告中,各領域被投訴最多的業者如下:Talk Talk於市話服務被投訴最多,被投訴的理由多數為服務缺失與相關服務爭議。Orange則在固網寬頻、行動通信服務(月租)受到最多申訴,其原因是Orange採取民眾購買寬頻服務後,方得再取得免費網路,以取代原本免費網路的提供。在付費電視上,則是BT Vision受到最多申訴,而內容多為提供服務與處理申訴之缺失。Ofcom期以公佈這些資訊,讓消費者得於每個領域選擇最好的供應商。
歐盟提出通用型人工智慧模型的著作權管理合規措施建議 資訊工業策進會科技法律研究所 2025年07月23日 為推動以人為本且值得信賴之人工智慧(Artificial Intelligence, AI)應用,同時確保高度保護健康、安全及歐盟《基本權利憲章》所載之基本權利,包括民主、法治及環境保護,防止AI在歐盟境內造成有害影響,並依據歐盟《人工智慧法》(AI Act, AIA)第1條第1項支持創新。歐盟人工智慧辦公室(The European AI Office) 於2025年7月10日提出《人工智慧法案》關於通用型人工智慧的準則(The General-Purpose AI Code of Practice)[1],以下簡稱「GPAI實踐準則」。 該準則由辦公室擬定計劃邀集通用型人工智慧(以下簡稱GPAI)模型提供商、下游提供商、公協會、權利人、專家學者、民間團體組成工作小組,進行討論與草擬。目的在協助GPAI模型的提供者符合AIA要求其應訂定模型技術文件,提供給下游提供者,並應制定著作權政策、發布訓練內容摘要的規定。預計將自 2025 年 8 月 2 日起適用。 壹、事件摘要 歐盟GPAI實踐準則包括透明度、著作權與安全維護(Transparency, Copyright, and Safety and Security)三大章節。為證明符合AIA第53條及第55條所規定義的指導文件(guiding document),並確保GPAI提供者(providers)遵守其在《人工智慧法》下之義務,於該準則於著作權章節提供適用AIA第53條第1項(c)款規定[2]的措施建議。 該準則強調採取相關措施可以證明符合前揭定之義務,但符合歐盟著作權及相關權利法規,並不以遵守該準則為要件,而且也不會影響歐盟著作權及相關權利法規的適用與執行,其權利最終歸屬法院。而著作權人依法保留的權利,以及針對文字與資料探勘(Text and Data Mining, TDM)的例外或限制 (EU 2019/790號指令第4條第1項),仍應在合法條件下適用。 考量到一些GPAI提供者是新創企業,規模有別於一般企業,故該準則亦強調其所要求採取的是相稱措施(proportionate measures),應與提供者之規模相稱且合乎比例(commensurate and proportionate),並充分考量中小企業(SMEs),包括新創公司(startups)之利益。 貳、重點說明 該準則建議GPAI提供者,採取訂定著作權政策、合法重製、尊重權利保留、積極防止侵權、提供問責管道等五大著作權管理措施。 一、訂定、維持並實施著作權政策 為證明已符合AIA第53條第1項(c)款所負之義務,GPAI提供者針對其投放於歐盟市場之通用人工智慧模型,應制定政策以遵守歐盟著作權及相關權利法規。該準則建議提供者應將著作權章節所列措施納入於政策中,公開發布並維持最新狀態其著作權政策摘要,且在組織內部指派負責實施和監督。 二、獲取合法可存取之受著作權保護內容 GPAI提供者進行 EU 2019/790號指令第2條第2項之文字與資料探勘及訓練其通用人工智慧模型進行網際網路內容的重製並擷取時,例如使用網路爬蟲(web-crawlers)或授權他人使用網路爬蟲代其抓取(scrape)或以其他方式編譯資料,應防止或限制對作品及其他受保護標的物之未經授權行為,特別是應尊重訂閱模式(subscription models)或付費牆(paywalls)所施加之任何技術性拒絕或限制存取。而且在進行網路爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站。 三、識別並遵守權利人的權利保留 GPAI提供者文字與資料探勘及訓練其通用人工智慧模型,其網路爬蟲應識別並遵守EU 2019/790號指第4條第3項的機器可讀(machine-readable)權利保留[3],讀取並遵循機器人排除協議(Robot Exclusion Protocol, robots.txt)。 該協議包括任何經網際網路工程任務組(Internet Engineering Task Force,IETF)證明技術上可行且可由AI提供者和內容提供者(包括權利人)實施之版本,或經國際或歐洲標準化組織採納透過基於資產(asset-based)或基於位置(location-based)之詮釋資料(metadata)等其他方式的機器可讀協議。亦包括通常係透過在歐盟層級經由權利人、AI提供者及其他相關利害關係人參與討論所達成共識的識別方案。 GPAI提供者亦應透過公開該等資訊並提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠取得相關資訊,包括所用的網路爬蟲、所採識別並遵守權利保留之措施。 四、降低著作權侵權輸出之風險 為降低整合GPAI模型的下游人工智慧系統(downstream AI system),生成可能侵害著作權或相關權利的作品或其他標的物GPAI提供者應實施適當且合乎比例之技術保障措施,防止其模型生成以侵權方式重製受歐盟著作權及相關權利法規保護之訓練內容。;同時,在使用政策、條款與條件或其他類似文件中禁止模型用於著作權侵權目的。對於以自由及開源授權(free and open source licenses)發布之GPAI模型,應在隨附文件中請使用者注意禁止模型用於著作權侵權用途。無論是將模型整合至其自身的人工智慧系統,或係依據契約關係提供給他人。 五、提供聯繫受理管道 GPAI提供者應提供與受影響權利人進行連繫的管道與資訊,讓受影響之權利人及其代理人(包括集體管理組織(collective management organizations))以電子方式進行投訴。同時,勤勉、非任意地並在合理時間內處理投訴,除非投訴明顯無根據,或已對同一權利人提出之相同投訴作出回應。 參、事件評析 美國先前於2025年6月23日曾由加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出AI訓練行為可主張合理使用的簡易裁決(summary judgment)[4]。但法官仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定,並不支持盜版一本本來可以在書店購買的書籍對於創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。 這次歐盟的準則更明確指出,GPAI提供者進行文字與資料探勘及訓練其通用人工智慧模型,以網路爬蟲(web-crawlers)進行網際網路內容的擷取,應尊重訂閱模式(subscription models)或付費牆(paywalls)所採取的技術性拒絕或限制存取。而且在進行網路內容爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站,即訓練資料的取得必須是合法。而且必須積極使用可識別並遵守機器人排除協議(Robot Exclusion Protocol, robots.txt)的技術,更應透過公開該等資訊、提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠及時知悉所用網路爬蟲、所採尊重權利保留之措施。 雖然前揭美國法院案件正在進行審理,但顯然與歐盟的GPAI實踐準則及美國著作權局的合理使用立場[5]一樣,均不認同迴避權利保護施、自盜版網站取得的資料之情況。我國日前發生七法與法源公司之間的著作權訴訟,七法以網路爬蟲爬取法源公司於使用條款限制存取的資料,並非技術創新撞上不合時宜的舊有法律框架,而是創新應用仍應在合理保護權利的前提下進行。 歐盟GPAI實踐準則所揭示的政策制訂、尊重權利保留、積極防止侵權、提供有效且給予合理回應的問責管道等AIA合規要求,已提示GPAI的開發、服務提供,應如何透過公開、揭露措施來配套降低科技創新應用過程對既有權利的影響,也指引其應建立的內部管理與外部溝通重點。對於開發、運用GPAI對外提供服務的企業而言,在爭執訓練資料應有合法空間的同時,或許應該思考是否應先採取歐盟GPAI實踐準則所建議的措施,以尊重既有權利的態度,積極降低權利人的疑慮,始有助於形成互利的合法利用空間。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai。(最後閱覽日:2025/07/21) [2]該條款要求將通用人工智慧模型投放於歐盟市場(Union market)之提供者,必須制定政策以遵守歐盟著作權及相關權利法規,特別是透過最先進之技術,識別並遵守權利人依據《第2019/790號指令》(Directive (EU) 2019/790)第4條第3項所表達之權利保留。 [3]指不接受其著作被用於文字與資料探勘目的之利用。 [4]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [5]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
德國「智慧聯網倡議」德國聯邦經濟及能源部於2016年9月1日公布數位議程框架新的經費公告,以支持智慧聯網示範的實施與推廣。德國聯邦政府於2015年9月公布的智慧聯網(Initiative Intelligente Vernetzung)戰略,該戰略實施的4個面向如下: (1)應用領域的支持:聚焦教育、能源、衛生、交通和管理五大應用領域的數位化和智慧化運用及發展,並排除相關實施障礙; (2)促進合作:促進資通訊技術與五大應用領域間的跨領域溝通與合作; (3)改善框架條件:加強投資環境並消除相關障礙;保護隱私權及加強網路安全;制訂相關標準化作業;提升商品或服務市場競爭力; (4)加強各界參與:促進各界參與及討論,共創及共享經濟利益。德國聯邦政府基於該戰略計劃,提出智慧聯網倡議,及提供開放式創新平台,促進不同領域的合作及整合運用,將有助於產業價值及競爭力的提升,並提高國際間合作的機會。 我國為發展智慧聯網相關產業,曾推出包括「智慧辨識服務推動計畫」、「智慧聯網商區整合示範推動計畫」等相關應用服務整合及解決方案計畫,今年更陸續推出「亞洲‧矽谷推動方案」、「數位國家‧創新經濟發展方案」,藉以提高數位生活服務使用普及率,並以創新驅動產業升級轉型。
南韓司法單位擬懲處黃禹錫等四人去(2005)年11月,全球幹細胞研究先驅-韓國首爾大學黃禹錫(Hwang Woo-suk)教授承認其研究有國際醫學倫理瑕疵,引發軒然大波。其後,相關的醜聞頻傳,黃教授更被控研究造假,使得原本以前瞻之胚胎幹細胞研究技術(即體細胞核轉置技術”somatic cell nuclear transfer”)獨步全球的韓國科學界,研究信譽遭受嚴重打擊。 偵辦「黃禹錫科研論文造假醜聞案」的南韓檢察當局,經連日傳訊相關人員後,正考慮對黃禹錫等四人採取司法懲處。 對於被查出不法獲得並使用科研用卵子的黃禹錫,檢方考慮依據違反「生命倫理及安全之法律」等條文予以懲處。 據指出,檢方在調查中,掌握了2004年及2005年刊登在「科學」雜誌上的科研論文,黃禹錫等人捏造體細胞複製幹細胞,和為病患複製培育胚胎幹細胞的科研數據,矇騙了整個科學界。調查顯示,黃禹錫去年十一月檢驗幹細胞的遺傳基因(DNA)指紋之前,似乎真的不曉得根本就不存在為病患量身打造複製培育胚胎幹細胞的事實。但檢方卻證實黃禹錫確實指示屬下研究員,將部分照片等科研數據和資料,自我膨脹等造假的事實。 由於生醫研究給許多病患帶來新的治療希望,因此其通常會以實際行動(即自願捐贈研究用檢體、協助經費募集等)表達支持。惟研究瑕疵或造假則會讓病患及一般民眾認為遭受欺騙,進而影響其未來捐贈檢體或以受試者身份參與生醫研究之意願。可見生醫倫理並不僅是道德呼籲,也是生醫研究能否順利進行、生醫研究能否生根發芽的重要基石。 黃禹錫案之相關報導可參見 The Economists, December 3 rd 2005, p. 71; The Economist, December 24 th 2005, p. 109-110
日本公布「如何計算森林吸收的二氧化碳量」因應2021年10 月日本政府修訂的全球變暖對策計劃,訂立森林在2030年要達到3800萬噸的二氧化碳吸收量之目標,因此日本林業廳公布了「如何計算森林吸收的二氧化碳量」之方法,進一步展現森林吸收二氧化碳的功能,以提高民間企業和地方公共團體等公眾參與的植林、造林活動的意願,以及促進公眾對森林維護在全球暖化對策中的重要性認識。分別為下列三種計算方式: 森林一年吸收二氧化碳量的簡單計算方法 每1公頃森林一年吸收二氧化碳量=每公頃森林每年樹幹生長體積(m3/年·ha)×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數 林地復育增加森林吸收二氧化碳量的計算方法 因林地復育增加森林吸收二氧化碳量=有進行林地復育和沒有進行林地復育的森林估計累積量之差×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數 因種植森林土壤所維持之二氧化碳含量計算方法 因種植森林土壤所維持之二氧化碳含量=土壤平均碳累積量(tC/ha)×種植森林所保持的土壤量相關係數×種植森林之面積(公頃)×種植森林之年數×土壤流出時排放到大氣中的二氧化碳排放係數×二氧化碳換算係數 此份公告規範了日本未來如何計算森林吸收的二氧化碳量之方式,目前我國依據「國際氣候變遷專家委員會(IPCC)」建議公式,推估森林資源林木之碳貯存量,推估結果臺灣地區森林林木之碳貯存量約有754百萬公噸二氧化碳,每公頃平均碳存量約為每公頃378 公噸二氧化碳,對此亦可參考上述公式推算,以更了解我國的森林與碳管理關係。