淺談我國經濟部能源局建築能源效率管制措施
科技法律研究所
2013年3月25日
壹、事件摘要
行政院2012年9月份核定「經濟動能推升方案」,擘畫台灣2030年經濟藍圖。在該方案中,乃明示能源永續發展的重要性。經濟部能源局於2013年3月份公告修正「指定能源用戶應遵行之節約能源規定」,針對22,349家空調設備用電大之觀光旅館、百貨公司、零售式量販店、連鎖超級市場、連鎖便利商店、連鎖化妝品零售店、連鎖電器零售店及銀行、證券商、郵局、大眾運輸場站及轉運站等合計11類業者,實施「冷氣不外洩」、「禁用白熾燈泡」及「室內冷氣溫度限值」規定,預估每年可節省2,158萬度電。
經濟部能源局表示,11類服務業100年總用電量約71億度,其中空調用電量約占41%。觀鄰近中國大陸、南韓、日本政府均已針對營業場所訂有夏季室內空調溫度,並由公部門帶頭示範。台北市政府自2011年起亦開始推動「營業及辦公場所室內冷氣平均溫度須保持在攝氏二十六度以上」規定,實施至今有效促使約700家能源用戶(契約容量超過300kW)之空調均溫維持於二十六度,實施結果由99年不合格率32.3%,至101年不合格率降低為4.9%,顯示執行該規定有效可行。
貳、重點說明
經濟部能源局新修正公告之「指定能源用戶應遵行之節約能源規定」,乃著眼於建築物內部耗能之管制,而該管制措施乃近年來歐、美等先進國家亟力促進推動的建築能源效率(energy efficiency)議題。
參、事件評析
據統計,建築物耗能占人類經濟活動總碳排放量40%,而台灣地區舊建築物約莫占整體建築物97%,如何有效提升舊建築物本身之能源效率為重要課題。查內政部建築研究所之相關研究,建築物節能主要含括三個面向 - 外殼節能、空調節能及照明節能,因建築外殼節能為內政部營建署之管轄範疇,故經濟部能源局僅就建築物之空調節能及照明節能進行管制,本文將以美國聯邦能源部(Department of Energy, DOE)相關之法制政策為比較探討。
美國聯邦政府於2011年2月份正式啟動「更佳建築倡議」(Better Building Initiative),於2012年12月份能源部(Department of Energy, DOE)發布之進度報告(Progress Report)指出,目前建築能源效率存有若干投資障礙,第一,尚缺少能源效率投資成本節省之實證數據;第二,尚缺少潛在市場和技術解決方案之相關資訊;第三,能源效率作為商業最佳實踐尚未普遍被接受。基此,能源部將致力於促進能源效率投資並強化聯邦公部門示範作用等手段。
在促進能源效率投資上,因市場尚缺乏相關數據資訊,難就能源效率之市場價值進行驗證;將研議相關機制,作為未來融資和建築物改善的基礎。另在聯邦公部門強化示範作用上,將透過聯邦能源管理計劃(Federal Energy Management Program, FEMP)和節能績效契約(Energy Savings Performance Contract, ESPC),持續強化能源技術服務公司(Energy Service Companies, ESCO)進行聯邦建築物節能效益之提升和擔保。
此外,於該倡議旗下之「更佳建築挑戰」(Better Building Challenge)乃鼓勵民間部門之參與。以美國百貨業龍頭梅西百貨(Macy)為例,其承諾將透過能源資訊系統(EMS)之使用、觀察及分析,找出佔地一億七千九百萬平方呎的商業樓地板面積之關鍵能源機會。照明方面,該公司也以超過一百萬盞LED燈之替換與重點照明,在過去三年內減少了百分之七十的照明能源消耗。
綜上觀察,我國能源局新修正「指定能源用戶應遵行之節約能源規定」下「禁用白熾燈泡」規定,乃禁止十一類業者使用二十五瓦特以上之白熾燈泡於一般照明用途,近似於美國梅西百貨於「更佳建築挑戰」下所承諾之LED重點照明之實踐。此外,借鏡美國經驗,我國宜研議建立起台灣建築能源效率數據資訊之系統資料庫,助於未來舊建築改善市場之發展。
2017年6月28日日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書-以實現產業整合(Connected Industries)為目標-」。日本政府為能持續推動該國經濟,以建立創新附加價值的產業社會為目標,以實現產業整合並促進創新與競爭環境,於本年度一月至六月召開七次「第四次產業革命競爭政策研究會」,進行日本競爭政策檢討,並於28日發佈第一階段報告書。 本報告中提出四種大數據應用的商業模式,分別為:單獨成長型、附隨應用型、他面活用型與多面展開型四種。單獨成長型著重於產品或服務本身透過資料蒐集應用來改善品質。附隨應用型則除了透過資料搜集以進行產品與服務品質改善以外,亦擴散經驗運用到其他使用者的服務內容改善。他面活用型則透過產品或服務的資料蒐集,運用到其他的領域(例如駕駛資料的蒐集運用到保險費率的計算)。多面展開型則將多種不同的產品與服務的資料取得後綜整分析以能相互提升品質,或應用到新發展的領域。 報告中並提出資料運用對競爭環境影響的三個關鍵步驟。首先是資料本身的影響力,包括資料本身的必要性、資料品質、蒐集成本等。其次為資料蒐集的可能性,因其他競爭者也可能取得相同資料,故應確保資料的稀少性與蒐集能力的差異(與競爭者能區別)。第三是資料運用可能性,應注意資料應用上是否有資金、人才在競爭上的其他限制。
標準制定組織成員之專利揭露義務標準制定組織為了提高產業競爭,防止標準制定組織之會員們,在獲得涵蓋產業標準的專利權後,以壟斷性手段壓迫其他競爭對手,故通常會以智慧財產權政策要求參加的會員揭露其被標準制定組織選擇寫入標準的專利。其重要內容通常包括: 1. 必要專利揭露 許多標準制定組織皆有規定,標準必要專利權人應依以誠實信用及適當方式進行揭露之義務,例如IEEE及ETSI 。即對於討論中的技術標準,必須對標準制定組織及其參與者公開揭露所持有的必要專利。揭露的基本目的主要有三項 : (1) 使標準開發相關工作小組會員可以掌握納入標準之多項候選技術的基本資訊(例如專利技術價值、成本及可行性等等),並做出適當選擇。 (2) 藉此得知須提出授權聲明或承諾的必要專利權人。 (3) 藉此讓必要專利的潛在實施者得知應向那些必要專利權人獲取必要專利相關資訊。 2. 事前揭露授權條款(ex-ante disclosure of licensing terms) 事前揭露授權條款係一種受保護之技術在被採納為標準必要專利前,將授權條件的揭露的機制,目前IEEE及ETSI採行自願性揭露方式。與必要智財權的揭露及授權聲明不同,其主要的目的在於讓標準制定委員會將技術採納為標準前,可以根據所揭露的授權條件來決定有那些技術在符合權利人授權條件下,有哪些技術可以納入標準,又有哪些不同替代技術,並據以作成決定 。
美國最高法院在Bilski v. Kappos案中仍然留下對於商業模式的可專利性做下模糊的判決美國最高法院於2010年6月28日對Bilski v. Kappos案作出5比4的拉距判決。原告Bilski為一家能源產品公司,其就一種讓買家或賣家在能源產品價格波動時,可用來保護、防止損失或規避風險的方法申請商業方法專利(Business Method Patent)。但美國商標專利局審查人員以此發明只是一種解決數學問題,而為抽象而無實體呈現的想法為理由而拒絕。經該公司於專利上訴委員會上訴無效後,繼續上訴至聯邦巡迴法院與最高法院。 最高法院拒絕適用前審以美國專利法第101條(35 U.S.C. §101),創造發明是否為有用的、有形的及有體的結果作為認定方法專利的標準。而最高法院多數意見係採用「機械或轉換標準」(machine or transformation test)為專利法第101條可專利性之標準,認定如果創造發明的方法能與機械器具或配件相結合或轉換為另外一種物品或型態時,即認定此方法具可專利性。惟經法院適用此標準後,仍認定原告的商業方法不具可專利性。 一些批評認為,目前「方法」和「轉換」等關鍵字的定義還不清楚,而該判決並沒有澄清這些爭議,甚至帶來更多的疑惑。美國律師Steven J. Frank認為,雖然最高法院的意見放寬了可專利性的標準,但是並沒有提及認定可專利性的其他標準。 該判決亦未明確指出商業方法究竟要符合哪些實質要件,方具有可專利性。相當多的電子商務中所使用的「方法」都有專利,最有名的大概就是亞馬遜公司的「一鍵購買(one-click)」的網路訂購方法,還有Priceline公司「反向拍賣」(reverse auction)的方法等。許多電子商務、軟體及財務金融相關業者在這個判決之後,對於商業方法的可專利性也感到相當的困惑。如果有方法專利的存在,那麼擁有這些專利的公司就可以放心了;但是,如果方法沒有可專利性,那麼對於現在擁有方法專利的權利人不啻是一個很壞的消息。是否一些比較不抽象的方法就具有可專利性,而比較抽象的方法就專利性,判定的標準又在哪裡,對此,法院並沒有加以說明,在法院明訂出更明確的標準之前,目前仍留給美國商標專利局來判定。
美國加州「Asilomar人工智慧原則決議」美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下: (1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。 (2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。 (3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。 (4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。 (5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。 (6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。 (7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。 (8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。 (9)人工智慧所產生之責任,應由設計者以及建造者負擔。 (10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。 (11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。 (12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。 (13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。 (14)人工智慧之技術應盡力滿足越多人之利益。 (15)人工智慧之經濟利益,應為整體人類所合理共享。 (16)人類對於人工智慧之內在目標應享有最終設定權限。 (17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。 (18)人工智慧所產生之自動化武器之軍備競賽應被禁止。 (19)政策上對於人工智慧外來之發展程度,不應預設立場。 (20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。 (21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。 (22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。 (23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。