美國國防授權法案擴大告發者保護範圍透過外部監督有效遏止不法行為

  自2013年7月1日起,2013年國防授權法(2013 National Defense Authorization Act,NDAA)新規定生效,使得聯邦政府採購案件對告發不法行為者(whistleblower)的保護,由承包商的雇員擴及於分包商的雇員,在此之前,如果分包商的員工向政府直接告發不法行為時,絲毫沒有法律可以用於對抗雇主可能採取的報復措施。

 

  2013 NDAA業於1月份經美國總統簽署,期中除新增對於分包商雇員保護外,該法案也擴張了主包商員工的保護範圍。新法之下,主包商員工如向其公司內部之主管告發不法行為,一樣可以受到法律對告發者的保護,強化了現行法下只有直接對政府申訴者始能得到法律保護。

 

  根據2013 NDAA第828節之規定,承包商、分包商之雇員,都不能被解雇、降級或其他歧視行為以作為揭發行為之報復。當這些雇員合理認為有關於聯邦契約的管理不善、聯邦經費的浪費、或濫用聯邦契約授與之權力等行為,而可能造成潛在的或特定的對公共健康或安全之危害時,或違反聯邦契約行為有關法律或法規時,而向國會議員、稽查總長、政府課責辦公室(The Government Accountability Office)、聯邦契約管理人員、司法部人員、法院或陪審團、承包商或次包商負責調查不法之人員等提供資訊時。法規也明訂,條文中所謂報復,包括該等人員即使是受到行政機關人員在法定權限內的的正式要求而提供資訊時亦然。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國國防授權法案擴大告發者保護範圍透過外部監督有效遏止不法行為, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6262&no=64&tp=1 (最後瀏覽日:2026/02/15)
引註此篇文章
你可能還會想看
日本發布資料素養指南之資料處理篇,旨在促使企業理解便於活用於數位技術與服務的資料管理方法

日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料處理篇,主要為促使企業理解有利活用於數位技術與服務的資料管理方法。 《指南》資料處理篇指出,資料的生命週期涵蓋資料設計、資料蒐集、外部資料連動、資料整合、資料處理、資料提供、資料累積以及資料銷毀等不同階段。《指南》建議在資料生命週期的各階段,盡可能的不要有人類的介入。舉例而言,資料蒐集可以透過感測器或系統進行。該建議的目的在於,人類介入資料生命週期,僅會引起輸入錯誤或是操作錯誤等風險。 此外,《指南》亦於資料處理篇中針對資料治理給出四點建議,分別如下: (一)資料是企業的重要資產,因此應重視其管理方式。管理方式涵蓋帳號密碼、透過生物辨識技術進行資料接觸管理、Log檔之取得、系統設定禁止使用USB等方式。 (二)資料治理的重點在於對人政策。除了向員工強調不要開啟不明網站及釣魚信件以外,企業亦應與員工建立堅實的信賴關係。 (三)資料公開或流通時應注意,如果不希望提供後的資料被二次利用,應於雙方間的資料利用契約中敘明。此外,由於資料具備易於複製及傳輸的特性,因此在公開或流通資料時,應考量適用諸如時戳技術等可確保資料原本性或使資料無法被竄改的數位技術。 (四)資料銷毀如果僅是單純的刪除資料,有透過數位技術找回資料的可能性。因此,除可評估委由專門進行資料銷毀服務的公司協助以外,由於銷毀資料經由個人電腦外洩之事件時有所聞,故亦應留意個人電腦之資料管理。 我國企業如欲將資料活用於數位技術或服務,除可參考日本所發布之《指南》資料處理篇以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,以建立自身資料處理流程,進而強化資料管理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

澳洲詮釋自動駕駛「恰當駕駛」內涵

  澳洲國家交通委員會(National Transport Commission, NTC)2017年11月提出「國家自駕車實施指南(National enforcement guidelines for automated vehicles)」,協助執法單位適用目前道路駕駛法規於自駕車案例上。由於澳洲道路法規(Australian Road Rules)第297條第1項規範「駕駛者不得駕駛車輛除非其有做出恰當控制(A driver must not drive a vehicle unless the driver has proper control)」,此法規中的「恰當控制」先前被執法機關詮釋為駕駛者應坐在駕駛座上並至少有一隻手置於方向盤上。因此本指南進一步針對目前現行法規適用部分自動駕駛系統時,執法機關應如何詮釋「恰當駕駛」內涵,並確認人類駕駛於部分自動駕駛系統運作時仍應為遵循道路駕駛法規負責。   本指南僅提供「恰當控制」之案例至SAE J2016第一級、第二級和第三級之程度,而第四級與第五級之高程度自動駕駛應不會於2020年前進入市場並合法上路,因此尚未納入本指南之詮釋範圍之中。本指南依照採取駕駛行動之對象、道路駕駛法規負責對象(誰有控制權)、是否應將一隻手放置於方向盤、是否應隨時保持警覺以採取駕駛行動、是否可於行駛中觀看其他裝置等來區分各級自動駕駛系統運作時,人類駕駛應有之恰當駕駛行為。

歐盟執委會發布2021歐洲創新計分板報告

  歐盟執委會(European Commission, EC)於2021年6月21日發布2021歐洲創新計分板報告(European Innovation Scoreboard 2021, EIS),其以「整體架構條件」(Framework conditions)、「投資」、「創新活動」和「影響力」(Impacts)四大評比指標,其下再細分為12個次標和32個子標,次標例如人力資源、企業創新、就業影響力等;子標則例如政府部門研發創新支出、企業專業職能訓練、專利與商標申請、高科技產品出口等。相較於2020年創新計分板報告的10個次標和27個子標,本次新增2個次標為列屬在「投資」下的資通訊運用(Use of information technologies),以及在「影響力」下的環境永續。資通訊使用廣度又可分為(1)企業是否提供教育訓練以提升員工的資通訊技能、(2)是否聘用資通訊專家。而環境永續下又可細分為(1)資源生產力(Resource productivity)、(2)產業排放PM2.5狀況、(3)環境相關技術發展狀況;以上即為今年新增的5項子標。   歐洲計分板依前述指標將歐盟會員國創新表現分為四組,2021年綜合創新能力分別為:(1)創新領導者(Innovation Leaders):包含瑞典、芬蘭、丹麥、比利時,為創新表現大於歐盟成員國平均創新度,且超過25%以上者;(2)優秀創新者(Strong Innovators):包含荷蘭、德國、盧森堡、奧地利、法國等,創新表現大於歐盟成員國平均但不超過25%者;(3)中等創新者(Moderate Innovators):包含義大利、馬爾他、西班牙、葡萄牙等國,其創新表現小於歐盟平均者;以及最後一組(4)新興創新者(Emerging Innovators):包含匈牙利、波蘭、羅馬尼亞等,為創新表現低於歐盟平均之70%。其中第四組新興創新者為新名稱,以取代2020年的適度創新者(Modest Innovators),且今年共有7個國家落入第四組,相比2020年的2個國家還要增加許多。   此外,在各特定領域上,該報告亦有對不同國家進行排名。例如在數位化領域,表現最好者為丹麥、芬蘭、荷蘭。在企業投資部分,以德國、瑞典和比利時為最佳。而在全球綜合創新表現上,歐盟綜整OECD和世界銀行的數據分析,南韓為創新表現最佳,其次才是加拿大、澳洲、美國、日本和歐盟。歐盟於2020年之創新排名領先美國,但在2020年到2021年之間,美國之中小企業產品與流程創新大幅增長至2020年的兩倍,故創新排名從第6進步到第4。

美國OMB發布M-26-04備忘錄,確立聯邦採購之「無偏見原則」與透明度義務

美國白宮管理與預算辦公室(Office of Management and Budget,以下簡稱OMB)在2025年12月11日發布M-26-04備忘錄(以下簡稱本指引),目標是落實第14319號行政命令「防止聯邦政府中的覺醒AI」(Preventing Woke AI in the Federal Government)。本指引闡述「追求真相」(Truth-seeking)、「意識型態中立」(Ideological Neutrality)兩大「無偏見AI原則」(Unbiased AI Principles),並強制要求聯邦機構在採購大型語言模型(LLM)時,必須將此二原則納入合約條款。 為確保符合規定,本指引要求聯邦機構在進行採購時,應避免強制供應商揭露過於敏感的技術資料(如模型權重),而是採取以下兩層級的資訊揭露架構: 1. 基本透明度要求(Minimum Threshold for LLM Transparency) 各機構於招標階段,應要求供應商提供以下資訊: (1) 可接受的使用政策:界定產品適當與不適當用途的文件。 (2) 模型、系統和/或資料的摘要卡(Model, System, and/or Data Cards):包含訓練摘要、風險緩解措施及基準測試評分。 (3) 終端用戶資源與意見回饋機制:包含用戶教程及針對違反無偏見原則產出的回報管道。 2. 強化透明度門檻(Threshold for Enhanced LLM Transparency) 若機構擬將模型整合至其他軟體或服務中,則需獲取更深入的開發與運作資訊,例如: 1. 預訓練和後訓練(Pre-Training and Post-Training):如影響產出事實性(factuality)的活動、系統提示詞(System Prompts)、以及內容審查過濾器的具體運作。 2. 模型評估:針對政治議題的偏見測試結果與方法論。 3. 模型中嵌入的企業控制(Enterprise-Level Controls): 如可客製化的系統指令或來源引用功能。 4. 第三方對模型的修改:非原廠開發者所施加的額外控制層。 本指引對聯邦行政機構具有行政拘束力。機構必須於2026年3月11日前更新採購政策,並將上述要求納入新舊合約中。值得注意的是,本指引引入了「實質性要求」(Materiality Requirement),即若供應商拒絕針對違反無偏見原則的產出採取糾正措施,將構成合約違約之重要事由,機構得據此終止合約。 觀察美國OMB此次發布的內容,係透過將「意識形態中立」轉化為具體的採購合規要件,OMB利用聯邦政府龐大的購買力,在採購合約中確立供應商的「透明度義務」,OMB指引不僅建立了明確的法遵標竿,更可能發揮示範效應,將政府端的無偏見規範逐步推廣至私營部門,轉化為產業的最佳實踐標準。

TOP