近來國際間許多國家投入智慧商業及智慧消費之發展,為兼顧保障個人資料權利前提下,鼓勵產業界從事商業創新,英國商務創新技術部(Department for Business, Innovation & Skills)於2013年7月宣布促成「Midata創新實驗計畫平台」(midata innovation lab),由英國政府、企業界、消費者團體、監管機構和貿易機構共同組成,此為示範性自律性組織,參與之業者/機構於應消費者要求(consumer’s request)情形下,將所擁有消費者資料,特別是交易資料(transaction data),以電子形式及機器易讀取形式(electronic, machine readable format)對「我的資料」(Midata)體系公開(release);並且,將可更便利消費者利用這些資料瞭解自己的消費行為,在購買產品和服務時可以做出更為明智的選擇。
英國商務創新技術部係於2011年4月,開始提出所謂「Midata計畫」:於「更好選擇;更好交易環境;提昇消費者權力」政策(Providing better information and protection for consumers),宣示推動「Midata計畫」,作為提昇資訊力量(power of information)重要策略。為積極推動,「Midata計畫」,並協助產業界能有更詳細遵循指引,於2012年7月公告「Midata政府產業諮詢報告」(midata: government response to the 2012 consultation),同年12月出版「Midata隱私影響評估報告」 (midata: privacy impact assessment report)。
為配合上述政策施行,由產業界、組織、政府機構所共同組成的「Midata創新實驗計畫平台」(midata innovation lab),已開始展開運作。此平台認為,近來越來越多實務情形證明,個人資料對於企業而言已被視為日漸重要的資產,並且未來將成為提供更個人化、多元化之產品服務之重要基礎。倘若能在確保消費者個人資料相關權利之前提下,促成產業界積極投入發展,以「我的資料(Midata)創新實驗計畫」為運作平台,對於企業所持有個人資料,兼顧企業與消費者原則共同獲益,將可因應趨勢取得商業先機。
以英國商務創新技術部規劃政策,前期試行推動先以「核心產業」(core sectors)(金融產業、電信產業、能源產業)為導入適用,待實施具一定成效後,將延伸推廣至其他產業領域(non-core sectors),而後也將由現行初期以產業自律性參與計畫模式,進展至以法令規範強制實施的階段。
本文為「經濟部產業技術司科技專案成果」
日本獨立行政法人情報處理推進機構(下稱IPA)於2025年10月發布美國第二次川普政權數位政策現狀報告(下稱現狀報告),內文聚焦於美國政權輪換後數位政策之變動與解讀,同時提及在推動AI發展的同時,亦應注重其安全性。 日本觀測美國數位政策的現狀報告指出,隨著社會數位化程度日益增加,除了雲端數位資料的累積,以及提升對於AI的依賴程度外,亦會造成釣魚信件難以識別,透過可自動生成程式碼的惡意攻擊型AI進行攻擊行為等AI濫用之風險。 準此,美國為確保AI與資料的安全性,並維持其領域之競爭優勢,於2025年7月23日發布AI行動計畫,並提出三大方針,包括加速AI創新、建構AI基礎設施,以及透過國際性的AI外交與安全保障發揮領導能力。此外,內文亦提及為確保競爭優勢,需要建立作為AI發展基礎的科學資料集,並建置資料中心,同時確保其具備高度安全性,以避免AI使用者輸入AI之資料遭到竄改或外洩。 此外,現狀報告內文提及日本企業Softbank與OnenAI、Oracle等公司共同參與規模達5000億美元的Stargate計畫,並已於德州著手建設AI資料中心,顯示日本在美國的AI基礎建設中扮演重要角色並佔有一席之地。然而,內文亦指出美國數位政策具備不透明性而有潛在風險,須持續留意與關注。 我國企業如欲深耕AI領域,並透過AI進行技術研發,可由建立科學資料集開始著手,以作為訓練AI模型的基礎,以達到運用AI輔助及縮短研發週期、減少研發過程中的試錯成本等效益。此外,為確保安全性,科學資料集建置過程中所需之數位資料,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,建立貫穿數位資料生命週期之資料治理機制。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
再工業化!?美國推動先進製造知基礎法制政策研析 日本透過「產業財產權人才培養協力事業」支援發展中國家智慧財產人才培養,消除企業於發展中國家進行經濟投資或活動時所面臨的智慧財產權相關妨礙2024年2月,日本專利廳根據公開招募結果,公布將由一般社團法人發明推進協會執行令和6年度的「產業財產權人才培養協力事業」。 日本自2021年起開始推動「產業財產權人才培養協力事業」,至今年已邁入第4年,且自2024年起預計於南非共和國開設新的專利審查實務課程,以提升南非共和國專利審查官的必要能力。 「產業財產權人才培養協力事業」主要針對日本企業進行海外經濟投資及活動熱門的發展中國家(包含新興國家以及最低度開發國家LDC),提供積極性的人才培養支援,並以強化該國家能安定培養智慧財產相關權利取得與執行的實施人才為目的。在法制整備較為落後的最低度開發國家如柬埔寨,人才培養強化支援的範圍亦包含產業財產權制度的整備。人才培養的對象以智慧財產廳的職員、取締機關的職員以及民間的智慧財產關係業者為重點,透過提升其對於智慧財產權的能力,解決日本企業為在外國取得產業財產權的權利保護需要花費大量時間、日本企業的產業財產權在外國受到侵害的案件逐年增加等問題,以消除日本企業在外國進行經濟投資及活動時的巨大妨礙。 日本專利廳亦針對研修方針下列事項提出建議: 1、消除發展中國家審查延遲的對應方針 於研修中透過增加案例閱讀、資料尋找演習等的講義時間,提升尋找能力及判斷能力;並透過學習日本的IT系統、業務處理過程,提升系統面的支援能力。 2、提升發展中國家審查品質的方針 透過學習日本的基準、判斷手法提升審查、審判的品質;並透過學習日本的管理手法,提升審查品質管理能力。 3、仿冒品對策的對應方針 透過介紹以日本及各國事例為基礎的支援,加深對於仿冒品對策的理解;並透過增加與實施健全執法相關聯的講義時間,加深對於仿冒品對策的一般理解。 4、建構更有效果的研修方法的對應方針 透過設置課程全體的導師制度(mentor),提升研修效果的同時,有效活用「線上」及「實體」連續性的混合研修方法,並透過於實體研修中實施團體討論、在職訓練(OJT)、案件閱讀、模擬裁判(Mock Trial)等,提升實踐能力。 本文後續會持續留意日本「產業財產權人才培養協力事業」的發展,以掌握日本對於發展中國家支援的最新資訊。我國企業如未來預計於發展中國家進行經濟投資或活動時,亦應注意該國智慧財產權之程度,以評估相關風險。 本文同步刊登於TIPS網(https://www.tips.org.tw)
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。