英國先進材料研發之促進輔助法制政策介紹

刊登期別
2012年01月
 

本文為「經濟部產業技術司科技專案成果」

※ 英國先進材料研發之促進輔助法制政策介紹, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6328&no=64&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
歐盟理事會通過爭議不斷的歐盟數位單一市場著作權指令

  為了使歐洲的著作權法規更符合數位時代及單一市場所需,歐盟執委會(European Commission)於2016年9月所提出的「數位單一市場著作權指令」(The Directive on Copyright in the Digital Single Market)提案,於今年2月13日由歐洲議會(European Parliament)與歐盟理事會(Council of the EU)、歐盟執委會達成最終協議,歐洲議會與歐盟理事會並分別於3月26日及4月15日通過提案,歐盟理事會於4月17日簽署正式指令。新指令的重點內容包含: 文字與資料探勘(Text and data mining):第3條規定,研究組織為了科學研究而需對文字與資料探勘時,得例外對著作進行重製、擷取(extraction)。 強化著作人和表演者在數位環境中的地位:第14條規定,當著作人和表演者將著作權讓與或授權給出版商後,出版商必須定期向著作人和表演者告知這些著作的利用情形。另外,第15條規定,如果著作人和表演者覺得先前約定的報酬太低時,可以要求與出版商重新磋商更公平且適當的報酬。 賦予新聞內容重製權及向公眾傳播權:規定於第11條,使用新聞的內容(尤其網路新聞)時,須向新聞出版者取得重製權及向公眾傳播權的授權。另外,本次通過的正式指令,已無之前提案中具有爭議的「須得到新聞出版者同意才能使用新聞頁面超連結」條文內容,而無先前的超連結稅(Link Tax)爭議。 網路服務提供者義務:第13條規定,網路服務提供者如Instagram、YouTube等,有義務透過有效的機制,迅速刪除未經著作權人授權許可的內容,並防止這些未經授權的內容重新上架,以保護著作權人的利益。   不過,從歐盟執委會提案之後,第13條就引起了德國民眾的強烈反彈,從今年2月最後一個禮拜開始,德國各大城市展開了一連串名為「反對歐盟著作權改革法案」(gegen EU-Urheberrechtsreform)的抗議活動,包含線上連署及上街遊行,並已擴散至其他歐盟會員國。抗議訴求認為,使用所謂的「上傳過濾器」(Upload-Filter)會對網路的言論自由和多樣性產生巨大影響,由於在實際操作上,網路服務提供者只會依據著作權人所提供的著作授權清單,利用上傳過濾器自動過濾未得到授權的內容,因此經合法使用其他著作後所創作的新著作(例如文章內含有合法引用的內容),可能會成為被過濾、刪除的對象,因為上傳過濾器可能無法判別法定例外的合法使用。所以上傳過濾器被認為是有爭議的審查手段。   雖屢有爭議,但本次通過數位單一市場著作權指令,使歐盟的著作權法規更能適應當今數位世界,在音樂串流服務、影音點播平台、新聞彙整平台、以及各種社群平台已成為人們接觸著作和新聞的主要門戶時,加強網路使用者享有的自由和權利,創作者也將獲得更好的保護和報酬,以創造更繁榮的網路經濟。

歐盟數位經濟公平稅負指令草案無共識,法國與奧地利將先行交付立法

  2018年3月21日,歐盟執行委員會(European Commission)發布數位經濟公平課稅(Fair Taxation of the Digital Economy)指令草案,指出在數位經濟模式中,由於創造利益的用戶資料地並不受限於營業處所,因此銷售貨物與提供勞務之增值發生地,與納稅主體之納稅地點分離,而無法為現行來源地原則所評價,嚴重侵蝕歐盟境內稅基。對此,該草案分別提出了數位稅(Digital Tax)與顯著數位化存在(Significant Digital Presence)兩份提案,用以針對特定數位服務利潤制定共同性數位稅制,以確保數位服務業者與傳統的實體公司立於平等的市場競爭地位。   值得關注的是,該草案之長遠解決提案以「顯著數位化存在」(Significant Digital Presence)修正國際間課稅權歸屬之重要人事(Significant People function)功能判斷,並認為建立利潤分配原則時,應參考經濟合作暨發展組織(Organization for Economic Cooperation and Development)稅基侵蝕與利潤移轉(BEPS,Base Erosion and Profit Shifting)行動計劃中DEMPE模式(Development Enhancement Maintenance Protection Exploitation function),決定獲利之分配,作為未來增值利益的認定。   然而不少持反對意見的國家認為,數位經濟只是傳統公司面對數位化,利用無形資產的商業模式改變而已,而此種新興模式並不足以作為開徵數位稅收新稅種。縱使數位經濟下無形資產產生之價值必須重新界定,現行稅收歸屬與國際間租稅協定本身並無不妥,而應強調各國稅捐機關之租稅資訊之合作。愛爾蘭已與捷克共和國、芬蘭、瑞典發表反對聲明,表示數位經濟課稅的方案不應背離BEPS行動計畫之期中報告,並應考慮到國際間因租稅引起的貿易戰爭,以及避免對數位經濟的扼殺。對此,歐盟監管審查委員會(Regulatory scrutiny Board)亦認為,草案並未針對數位稅的有效稅率進行量化分析,嚴重忽略了數位稅對於區域內經濟的衝擊。   由於未能獲得歐盟會員國的共識,法國為了回應黃背心運動(Mouvement des gilets jaunes)的要求, 12月17日法國財政部長已公開表示2019年3月前,將自行針對數位廣告所得與數位資料所得稅收法案送交國內立法程序,該法案將直接以境內網路社群利潤推估大型數位企業之應稅所得,並支持「顯著數位化存在」的認定原則。同時奧地利財政部長也表示,會跟進數位稅收的立法並於2019年1月底公布稅收草案。

強化政府橫向協調,提升AI治理—澳洲擬於2026年初設立AI安全研究所

澳洲政府於2025年11月25日宣布,將於2026年初設立AI安全研究所(AI Safety Institute)。澳洲AI安全研究所的設立目標,為提供相關的專業能力,以監管、測試與共享AI在技術、風險、危害層面的資訊。經由辨識潛在的風險,提供澳洲政府與人民必要的保護。AI安全研究所將以既有之法律與監管框架為基礎,因應AI風險,協助政府各部門調整相關規範。其主要業務如下: .協助政府掌握AI技術的發展趨勢,動態應對新興的風險與危害; .強化政府對先進AI技術發展及潛在影響的理解; .共享AI資訊與作為協調政府各部門的樞紐; .經由國家AI中心(National AI Centre,NAIC)等管道,提供事業、政府、公眾與AI相關的機會、風險和安全的指導; .協助澳洲履行國際AI安全協議的承諾。 AI安全研究所並為2025年12月2日,工業、科學與資源部(Department of Industry, Science and Resources)發布的國家AI計畫(National AI Plan,下稱澳洲AI計畫)中,保障應用AI安全性的關鍵項目。澳洲AI計畫指出,AI安全研究所將關注AI的上游風險(upstream AI risks),與下游危害(downstream AI harms)。所稱之上游風險,係指AI模型和系統的建構、訓練方式,與AI本身的能力,可能產生的疑慮。下游危害,則係指使用AI系統時,可能的實質影響。 AI安全研究所將支援與國際、政府各部門間之合作;並共享新興的AI技術能力,以及對AI上游風險的見解,發布安全研究成果,提供產業與學術界參考。AI安全研究所監測、分析與共享資訊,提出政府各部門,對AI下游危害,可採取的一致性應對建議。 綜上所述,澳洲政府提出國家AI計畫,於既有的法制體系,滾動調整相關規範,以應對AI風險。並成立AI安全研究所,追蹤國際AI發展脈動,及時提供澳洲政府應對建議,協調各部門採取一致性的行動。澳洲政府對新興AI技術,所採取策略的具體成效,仍有待觀察。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP