英國先進材料研發之促進輔助法制政策介紹

刊登期別
2012年01月
 

本文為「經濟部產業技術司科技專案成果」

※ 英國先進材料研發之促進輔助法制政策介紹, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6328&no=64&tp=1 (最後瀏覽日:2025/12/08)
引註此篇文章
你可能還會想看
初探物聯網的資通安全與法制政策趨勢

初探物聯網的資通安全與法制政策趨勢 資訊工業策進會科技法律研究所 2021年03月25日 壹、事件摘要   在5G網路技術下,物聯網(Internet of Things, IoT)的智慧應用正逐步滲入各場域,如智慧家庭、車聯網、智慧工廠及智慧醫療等。惟傳統的資安防護已不足以因應萬物聯網的技術發展,需要擴大供應鏈安全,以避免成為駭客的突破口[1]。自2019年5月「布拉格提案[2]」(Prague Proposal)提出後,美國、歐盟皆有相關法制政策,試圖建立各類資通訊設備、系統與服務之安全要求,以強化物聯網及相關供應鏈之資安防護。是以,本文觀測近年來美國及歐盟主要的物聯網安全法制政策,以供我國借鏡。 貳、重點說明 一、美國物聯網安全法制政策 (一)核心網路與機敏性設備之高度管制 1.潔淨網路計畫   基於資訊安全及民眾隱私之考量,美國政府於2020年4月提出「5G潔淨路徑倡議[3]」(5G Clean Path initiative),並區分成五大構面,包括:潔淨電信(Clean Carrier)、潔淨商店(Clean Store)、潔淨APPs(Clean Apps)、潔淨雲(Clean Cloud)及潔淨電纜(Clean Cable);上述構面涵蓋之業者只可與受信賴的供應鏈合作,其可信賴的標準包括:設備供應商設籍國的政治與治理、設備供應商之商業行為、(高)風險供應商網路安全風險緩和標準,以及提升供應商信賴度之政府作為[4]。 2.政府部門之物聯網安全   美國於2020年12月通過《物聯網網路安全法[5]》(IoT Cybersecurity Improvement Act of 2020),旨在提升聯邦政府購買和使用物聯網設備的安全性要求,進而鼓勵供應商從設計上導入安全防範意識。本法施行後,美國聯邦政府機關僅能採購和使用符合最低安全標準的設備,將間接影響欲承接政府物聯網訂單之民間業者及產業標準[6]。   另外,美國國防部亦推行「網路安全成熟度模型認證[7]」(Cybersecurity Maturity Model Certification, CMMC),用以確保國防工程之承包商具備適當的資訊安全水平,確保政府敏感文件(未達機密性標準)受到妥適保護。透過強制性認證,以查核民間承包商是否擁有適當的網路安全控制措施,消除供應鏈中的網路漏洞,保護承包商所持有的敏感資訊。 (二)物聯網安全標準與驗證   有鑑於產業界亟需物聯網產品之安全標準供參考,美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)提出「物聯網網路安全計畫」,並提出各項標準指南,如IR 8228:管理物聯網資安及隱私風險、IR 8259(草案):確保物聯網裝置之核心資安基準等。   此外,美國參議院民主黨議員Ed Markey亦曾提出「網路盾」草案[8](Cyber Shield Act of 2019),欲建立美國物聯網設備驗證標章(又稱網路盾標章),作為物聯網產品之自願性驗證標章,表彰該產品符合特定產業之資訊安全與資料保護標準。 二、歐盟物聯網安全法制政策 (一)核心網路安全建議與風險評估   歐盟執委會於2019年3月26日提出「5G網路資通安全建議[9] 」,認為各會員國應評鑑5G網路資通安全之潛在風險,並採取必要安全措施。又在嗣後提出之「5G網路安全整合風險評估報告[10]」中提及,5G網路的技術漏洞可能來自軟體、硬體或安全流程中的潛在缺陷所導致。雖然現行3G、4G的基礎架構仍有許多漏洞,並非5G網路所特有,但隨著技術的複雜性提升、以及經濟及社會對於網路之依賴日益加深,必須特別關注。同時,對供應商的依賴,可能會擴大攻擊表面,也讓個別供應商風險評估變得特別重要,包含供應商與第三國政府關係密切、供應商之產品製造可能會受到第三國政府施壓。   是故,各會員國應加強對電信營運商及其供應鏈的安全要求,包括評估供應商的背景、管控高風險供應商的裝置、減少對單一供應商之依賴性(多元化分散風險)等。其次,機敏性基礎設施禁止高風險供應商的參與。 (二)資通安全驗證制度   歐盟2019年6月27日生效之《網路安全法[11]》(Cybersecurity Act),責成歐盟網路與資訊安全局(European Union Agency for Cybersecurity, ENISA)協助建立資通訊產品、服務或流程之資通安全驗證制度,確保資通訊產品、服務或流程,符合對應的安全要求事項,包含:具備一定的安全功能,且經評估能減少資通安全事件及網路攻擊風險。原則上,取得資安驗證之產品、服務及流程可通用於歐盟各會員國,將有助於供應商跨境營運,同時能協助消費者識別產品或服務的安全性。目前此驗證制度為自願性,即供應商可以自行決定是否對將其產品送交驗證。 參、事件評析   我國在「資安即國安」之大架構下,行政院資通安全處於2020年底提出之國家資通安全發展方案(110年至113年)草案[12],除了持續強化國家資安防禦外,對於物聯網應用安全亦多有關注,其間,策略四針對物聯網應用之安全,將輔導企業強化數位轉型之資安防護能量,並強化供應鏈安全管理,包括委外供應鏈風險管理及資通訊晶片產品安全性。   若進一步參考美國與歐盟的作法,我國後續法制政策,或可區分兩大性質主體,採取不同管制密度,一主體為受資安法規管等高度資安需求對象,包括公務機關及八大領域關鍵基礎設施之業者與其供應鏈,其必須遵守既有資安法課予之高規格的安全標準,未來宜完善資通設備使用規範,包括:明確設備禁用之法規(黑名單)、高風險設備緩解與准用機制(白名單)。   另一主體則為非資安法管制對象,亦即一般性產品及服務,目前可採軟性方式督促業者及消費者對於資通設備安全的重視,是以法制政策推行重點包括:發展一般性產品及服務的自我驗證、推動建構跨業安全標準與稽核制度,以及鼓勵聯網設備進行資安驗證與宣告。 [1]經濟部工業局,〈物聯網資安三部曲:資安團隊+設備安全+供應鏈安全〉,2020/08/31,https://www.acw.org.tw/News/Detail.aspx?id=1149 (最後瀏覽日:2020/12/06)。 [2]2019年5月3日全球32個國家的政府官員包括歐盟、北大西洋公約組織 (North Atlantic Treaty Organization, NATO)的代表,出席由捷克主辦的布拉格5G 安全會議 (Prague 5G Security Conference),商討對5G通訊供應安全問題。本會議結論,即「布拉格提案」,建構出網路安全框架,強調5G資安並非僅是技術議題,而包含技術性與非技術性之風險,國家應確保整體性資安並落實資安風險評估等,而其中最關鍵者,為確保5G基礎建設的供應鏈安全。是以,具體施行應從政策、技術、經濟、安全性、隱私及韌性(Security, Privacy, and Resilience)之四大構面著手。Available at GOVERNMENT OF THE CZECH REPUBLIC, The Prague Proposals, https://www.vlada.cz/en/media-centrum/aktualne/prague-5g-security-conference-announced-series-of-recommendations-the-prague-proposals-173422/ (last visited Jan. 22, 2021). [3]The Clean Network, U.S Department of State, https://2017-2021.state.gov/the-clean-network/index.html (last visited on Apr. 09, 2021);The Tide Is Turning Toward Trusted 5G Vendors, U.S Department of State, Jun. 24, 2020, https://2017-2021.state.gov/the-tide-is-turning-toward-trusted-5g-vendors/index.html (last visited Apr. 09, 2021). [4]CSIS Working Group on Trust and Security in 5G Networks, Criteria for Security and Trust in Telecommunications Networks and Services (2020), https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/200511_Lewis_5G_v3.pdf (last visited Nov. 09, 2020). [5]H.R. 1668: IoT Cybersecurity Improvement Act of 2020, https://www.govtrack.us/congress/bills/116/hr1668 (last visited Mar. 14, 2021). [6]孫敏超,〈美國於2020年12月4日正式施行聯邦《物聯網網路安全法》〉,2020/12,https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&d=8583 (最後瀏覽日:2021/02/19)。 [7]U.S. DEPARTMENT OF DEFENSE, Cybersecurity Maturity Model Certification, https://www.acq.osd.mil/cmmc/draft.html (last visited Nov. 09, 2020). [8]H.R.4792 - Cyber Shield Act of 2019, CONGRESS.GOV, https://www.congress.gov/bill/116th-congress/house-bill/4792/text (last visited Feb. 19, 2021). [9]COMMISSION RECOMMENDATION Cybersecurity of 5G networks, Mar. 26, 2019, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019H0534&from=GA (last visited Feb. 18, 2021). [10]European Commission, Member States publish a report on EU coordinated risk assessment of 5G networks security, Oct. 09, 2019, https://ec.europa.eu/commission/presscorner/detail/en/IP_19_6049 (last visited Feb. 18, 2021). [11]Regulation (EU) 2019/881 of the European Parliament and of the Council of 17 April 2019 on ENISA and on Information and Communications Technology Cybersecurity Certification and Repealing Regulation (EU) No 526/2013 (Cybersecurity Act), Council Regulation 2019/881, 2019 O.J. (L151) 15. [12]行政院資通安全處,〈國家資通安全發展方案(110年至113年)草案〉,2020/12,https://download.nccst.nat.gov.tw/attachfilehandout/%E8%AD%B0%E9%A1%8C%E4%BA%8C%EF%BC%9A%E7%AC%AC%E5%85%AD%E6%9C%9F%E5%9C%8B%E5%AE%B6%E8%B3%87%E9%80%9A%E5%AE%89%E5%85%A8%E7%99%BC%E5%B1%95%E6%96%B9%E6%A1%88(%E8%8D%89%E6%A1%88)V3.0_1091128.pdf (最後瀏覽日:2021/04/09)。

日本《第6期科學技術基本計畫方向》建言

  日本《科學技術基本計畫》為依據其科學技術基本法之要求,以每5年為期擬定,目的在於建構一立基於長期性觀點且體系化的科學技術政策,並以之為施政框架,目前實施之科學技術基本計畫,為規劃自2016年至2020年期間施行之第5期科學技術基本計畫。而為形成下一階段之科學技術基本計畫,日本學術會議現公布了「第6期科學技術基本計畫方向」建言,為日本學術會議所屬之學者委員會學術體制分科會經審議後,就上述科學技術基本計畫之擬定發表意見,預計會於內閣府召開之綜合科學技術與創新會議(総合科学技術・イノベーション会議)中提出,作為訂定第6期科學技術基本計畫之重要參考。   本建言除了持續強調投資基礎科學研究的重要性,亦關注學術多元發展與提升整合性,強調優越學術基礎的建構、發展、以及用以解決問題之能力提升,繫諸各領域、地區、個人所關切議題與思考方式之不同所帶出的多元性,而為克服現代社會面臨的各種課題,應注重自然科學與人文社會科學之跨域合作以形成具統合性的知識基礎,同時須平衡投入各學門的研究預算,避免科學技術投資過分集中於特定的學術領域。具體的方向上,本建言主要提供了4個規劃面向:(1)強化對博士生就學的經濟上支援,並增加相關就業機會,如增加大學終身教職員額與高階技術人才職位等;(2)為進一步促成前述的學術多元發展,重新檢討並建構政府資助各類研究之制度藍圖,除了持續資助基礎研究及應用研究之外,強化對年輕學者的補助,亦期待能對需持續性進行之研究(如生命科學等需長時間蒐集並保存資料之領域)提供長期或無限期的支援;(3)追求科研參與者的多元化(如鼓勵女性、外國人、身障者的投入),以實現科學家社群之多元發展;(4)促成科學家社群以個人身分或透過組織參與科學技術政策形成,避免相關政策的擬定與施行未能切合研究實務之需求。

英國BEIS發布第一代(SMETS1)智慧電表相容性公眾諮詢

  英國商業、能源和產業策略部(Business, Energy and Industrial Strategy, BEIS)於2018年4月17日發布公眾諮詢,議題為「最大化第一代(SMETS1)智慧電表的相容性(interoperability)」,該諮詢將截止於2018年5月24日。   英國對於SMETS1的推廣分為兩階段進行,基礎建設階段始於2011年,主要安裝階段則於2016年11月開始,國家數據及通訊供應商-資料通訊公司(Data Communications Company, DCC)自此階段開始營運,直至2020年智慧電表建置完成。   因現今由各能源供應商使用自身資料及通訊設備裝設第一代智慧型電表,造成消費者無法任意更換能源供應商之情況。對此,英國政府之長期政策目標雖為SMETS1最終可全數透過DCC進行運作,然由於現階段尚未強制能源供應商使用DCC所提供之服務,使用SMETS1的消費者仍無法自由的轉換能源供應商。   本文件提出了兩個方案向公眾諮詢: 要求能源供應商於六個月時限內至DCC註冊其所提供且合於規範的SMETS1,或將SMETS1更換為SMETS2(第二代智慧電表)。而於2020年12月31日前,所有未註冊之SMETS1將強制更換為SMETS2。 若能源供應商已嘗試所有合適的解決方法,仍無法於2019年底前使SMETS1在智慧模式下運作,就必須在2020年6月底前將SMETS1更換為SMETS2。 若供應商係於2019年後才取得SMETS1,於獲得SMETS1之後的六個月內採取所有相關措施後仍無法令SMETS1以智慧模式運作,亦應更換為SMETS2。最終,所有不能運行智慧模式之SMETS1將於2020年12月31日前被完全汰換。   英國政府期透過更完善的政策規劃改善現階段SMETS1透過個別能源供應商之數據及通訊系統運作之情況,以確保SMETS1之智慧模式於消費者更換供應商時能維持正常運作,使消費者可確實獲取改用智慧電表之利益。我國於2015年已開始推動低壓智慧電表建置,英國面臨之問題值得借鏡,政府於推廣低壓智慧電表之同時應注意智慧電表基礎設施之相容性,以增進低壓智慧電表建置效率及降低建置成本。

日本經產省修訂網路安全經營指引

  日本經濟產業省與獨立行政法人資訊處理推進機構(IPA)於2017年11月16日修正並公佈「網路安全經營指引」(サイバーセキュリティ経営ガイドライン)。經產省與獨立行政法人資訊處理推進機構為推動網路安全對策,以經營者為對象於2015年12月制定「網路安全經營指引」。惟因近年來網路攻擊越發頻繁,且攻擊方式亦越來越多樣化,僅透過事前對策無法妥善因應網路攻擊問題,故日本經產省與獨立行政法人資訊處理推進機構合作,參考歐美等國網路安全對策修正方向,擬加強企業事後檢測、應對和復原措施,並舉辦「網路安全經營指引修正研究會」,修訂「網路安全經營指引」。   本次修正未更改經營者應認識之三大原則︰(1)經營者應對網路安全有所認知,並作為領者者採取對策;(2)商業夥伴和委託者在內之供應鍊安全對策;(3)不論平時或緊急時,網路安全相關資訊之公開應與關係者進行適當溝通,而是修正10大經營重要項目中第5項、第8項和第9項,分別為︰(1)「建構網路安全風險應對措施」加入包含「攻擊檢測」在內之風險應對措施;(2)「事件被害復原體制之整備」加入「遭受網路攻擊時復原之準備」;(3)「包含商業夥伴和委託者在內之全體供應鍊對策及狀況掌握」加入「供應鍊對策強化」等記載。 日本政府希望透過上開指引之修正,建構安全之網路經營環境。

TOP