歐盟提出「一般資料保護規章」(草案)並審議,以因應未來聯網環境趨勢

  為因應近來智慧聯網(IoT)、巨量資料及雲端運算發展趨勢,為強化線上隱私權利及促進歐盟數位經濟的發展,歐盟執委會於2012年1月25日對於資料保護指令提出新的規章草案:「保護個人有關個人資料處理及自由流通規章(一般資料保護規章)」(Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the protection of individuals with regard to the processing of personal data and on the free movement of such data (General Data Protection Regulation)),以取代並廢除(repealed)原有「個人資料保護指令」規範,並修改(amend)「隱私與電子通訊指令」,預計在2013年6月進入歐洲議會、理事會及執委會的三方協商,若順利將在2014年通過,並在2016年生效。

  「一般資料保護規章」(草案)中對於聯網環境及智慧化設備運行之因應,重要規範內容有(1)追蹤(tracking)與特徵分析(profiling):訂定第20條「特徵分析措施」(Measures based on profiling)規範條文,保障每個當事人皆有主張不被採取特徵分析措施(如個人傾向、工作表現、財務狀況、位址、健康、個人喜好、可信度)而致產生法律效果或顯著影響該個人的權利(2)被遺忘及刪除權(right to be forgotten and to erasure):訂定第17條,創設新的權利「被遺忘及刪除權」,用以幫助民眾處理線上資料,當其不希望自己的資料被利用且無合法理由保留時,資料將被刪除(3)資料可攜權利(the right to data portability):訂定第18條,當資料處理是以電子化方法,且使用結構性、通用的格式時,資料當事人有權利可以取得該結構性、通用格式下的個人資料,更容易自不同服務提供者間移轉個人資料。(4)當事人的同意要件:第4條第8款明定,不論何種資料處理情況時所需的同意,增列必須是明確(explicitly)同意之要件(5)「設計階段納入隱私考量」(privacy by design)、「預設隱私設定」(privacy by default):訂定第30條,要求資料控制者及處理者應實行適當的技術性、組織性措施,並考量科技發展水準,制定特定領域及特定資料處理情況的標準及條件,並且資料保護將會從產品及服務最初發展、設計時就考量隱私問題應對「設計階段納入隱私考量」及「預設隱私設定」提出標準及條件。

  歐盟此次對於「一般資料保護規章」(草案)的修法進程,以及世界各重要國家的立場及反應態度,均值得後續密切觀察研析。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐盟提出「一般資料保護規章」(草案)並審議,以因應未來聯網環境趨勢, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6368&no=16&tp=1 (最後瀏覽日:2025/05/23)
引註此篇文章
你可能還會想看
中鋼開發高效率馬達用鋼片 節省能源

  「京都議定書」要求減少二氧化碳排放量引起各國重視,中國鋼鐵公司已開發高效率馬達用高品級電磁鋼片,可提高馬達輸出效能,節省能源。   中鋼公司六月十四日表示,為因應未來的能源政策趨勢,高效率馬達越來越受到國際間的重視,美國並規定符合效率的馬達才可銷售,我國也實施「三相感應電動機效率管制」措施,規定國內生產及進口的馬達必須是高效率的馬達。國內目前工業用馬達約有六十五萬台,家用馬達約一百萬台;中鋼公司說,依據研究顯示,馬達效率如果提升百分之二,國內每年約可節省用電量約為核能發電廠一部發電主機的發電量。   中鋼公司開發的高效率馬達用電磁鋼片為五十CS四百型與五十CS六百型,約可提升效率兩成,目前已可量產,對環保和節能有很大效益。

歐盟智慧財產局發布2022年《中小企業智慧財產記分板》

  歐盟智慧財產局(EUIPO)於2022年9月28日發布了2022年《中小企業智慧財產記分板(Intellectual Property SME Scoreboard 2022)》。EUIPO從2016年起進行本項調查,希望可以瞭解中小企業的現況,持續強化中小企業的智慧財產權保護。本次調查在2019年調查的基礎上,於2022年3月至5月間,針對歐盟境內8,372間中小企業進行調查。   根據本次的調查,有10%的中小企業擁有註冊的智慧財產權,在這10%的中小企業中,有93%的企業表示註冊智財權對其營運產生正面效益,包含: 1.有60%的企業表示能提高其商譽或形象。 2.有58%的企業表示能強化其智慧財產的保護。 3.有48%的企業表示能促進其長期的商業前景。   其次,在這10%的中小企業中,有45%的企業透過出售、授權或間接利用其註冊的智慧財產權促進企業發展,其中已有超過三分之一(36%)的企業成功獲得經濟收益。   此外,根據調查,企業註冊智慧財產權的主要原因包含: 1.有66%的企業表示有助於防止他人侵害其產品或服務(66%)。 2.有65%的企業表示有助於提升公司的價值和形象(65%)。 3.有63%的企業表示法律狀態穩定性更高(63%)。   再者,企業不願意註冊智慧財產權的理由包含: 1.有35%的企業表示無法預見註冊能帶來的好處。 2.有20%的企業表示其智慧資產(Intellectual Asset)創新性不足。 3.有19%的企業表示不瞭解註冊的相關程序。   最後,在這10%的企業中,有15%的企業表示曾被侵權,導致其營業額和商譽受損;其中以商標侵權的比例最高。在這些曾被侵權的企業中,有89%已採取相關措施捍衛其智慧財產權,包含: 1.有43%的企業與侵權者直接談判。 2.有31%的企業發送侵權通知(takedown notice)。 3.有29%的企業提起訴訟。   中小企業是歐盟經濟的支柱,但根據統計,只有大約30-60%的中小企業存活超過5年;為了提升中小企業的競爭力,歐盟持續推動各項政策鼓勵中小企業採取智慧財產權保護其創新研發,以提升歐盟經濟的整體發展。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP