中國大陸布局推動智慧城市建設,發布「2013年測繪地理信息藍皮書」

  中國大陸近年來積極布局智慧城市建設,並逐步將智慧城市的概念發展為具體的地理空間,2014年2月14日智能系統國家測繪地理信息局測繪發展研究中心--社會科學文獻出版社,發布2013年測繪地理信息藍皮書—《智慧中國地理空間智能體系研究報告(2013)》(以下簡稱「藍皮書」),揭示提出打造2030年智慧中國地理空間智能體系的具體目標。係以巨量地理資訊資源為基礎,透過新一代網際網路,以智慧聯網(Internet of Things, IoT)、雲端計算(Cloud Computing)和巨量資料(Big Data),實現地理資訊的智慧化應用,並透過相關政策形成以地理資訊獲取、處理及應用為主的雲端產業鏈。

  自2013年起,中國大陸國家測繪地理信息局每年選擇10個城市作為智慧城市建設試點,目前已有太原、廣州、徐州、臨沂、鄭州等試點城市完成初步項目,正進行設計論證及完善基礎設施等工作。該局副局長李維森並指出,大陸將在2015年全面完成數字城市地理空間框架建設,並於此基礎升級為智慧城市。
中國大陸國土資源部亦從2013年底配合「十二五規劃」逐步推動以雲端運算、巨量資料以及智慧聯網等新一代資通訊技術所建構之「國土雲」,以滿足國土資源資訊利用、查詢、監管的需求,並透過資訊數位化,為其他領域重大工作提供基礎資訊。

  從中國大陸近年來對於國家地理資源之蒐集、調查與管理手段觀察,可探知其對於國土資訊產業發展的高度重視,並欲在維護國土安全的前提下,加強推動有助於促進資訊流通效率以及資源廣泛利用的公共服務平台建設;對於此等具有國家安全戰略意義之新興科技領域,目前仍以國家投資為主要推動手段,後續相關法規發展殊值注意。

相關連結
※ 中國大陸布局推動智慧城市建設,發布「2013年測繪地理信息藍皮書」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6470&no=64&tp=1 (最後瀏覽日:2024/11/25)
引註此篇文章
你可能還會想看
VIZIO將為該公司為未獲消費者允可即蒐集收視行為等個人資料支付和解金。

  美國聯邦貿易委員會(Federal Trade Commission, 以下稱FTC)在2017年2月6號於其網站中公布, VIZIO, Inc.(以下稱VIZIO),世界最大的智慧電視製造商之一,在未取得購買該公司產品之千萬餘名消費者同意下,即於所生產之智慧型電視中,安裝蒐集消費者收視行為數據之軟體,然此舉業涉及違反美國聯邦貿易委員會法第45條(15 U.S.C. § 45 (n))以及紐澤西州消費者欺詐法(New Jersey Consumer Fraud Act)。為此VIZIO將支付和解金與美國聯邦貿易委員會及紐澤西州檢察總長辦公室。   本案起訴狀內容指出,VIZIO及其相關企業於2014年2月起便開始於其製造之智慧電視中獲取消費者在收視有線電視、寬頻、機上盒、DVD播放機、無線廣播以及串流裝置等相關影像資料時之資訊。這些資訊包含了性別、年齡、收入、婚姻狀況、教育程度、住屋資訊等交付與VIZIO、第三方及其相關企業做為行銷、發送特定廣告使用。   起訴狀中並稱該公司所謂之智能互動機制,雖可做為協助節目製作和建議,卻也同時於未對消費者詳細說明之下,逕行蒐集相關收視資訊,而此類追蹤消費者資訊屬不公平且欺騙的行為,已違反了FTC與紐澤西州對於消費者保護之法律。   為達成本案之和解,該公司願支付兩百二十萬美元作為和解金,包含向FTC繳納的一百五十萬美元及一百萬美元罰款與紐澤西州消費者事務所。聯邦法院命令並要求VIZIO必須清楚揭露其蒐集資料及分享給他方單位之行為,並取得消費者明示同意;另一方面,該命令亦禁止VIZIO對他們所蒐集消費者之隱私、安全及機密性資訊做誤導性的不實陳述以及刪除於2016年3月1日前所有以不當方式取得之消費者個人資料。該公司尚須接受兩年一次的隱私權安全保障計畫(名詞),包括全面性隱私風險評估、識別消費者個資之潛在不當使用情形,並制訂相關措施來修復這些風險。另新增一項銷售管理計畫,以確保該公司產品經銷商及售後服務均能就消費者個人資料得到保障。   此次事件而言,和解金雖非屬可觀之金額,然重點在於作為世界最大的智慧電視製造商之一的VIZIO,經揭露此一訊息後對其商譽之影響,或許才是最大的打擊。為了在大數據時代中能有效的管控法律風險,任何蒐集消費者行為等個人資料時,均應符合相關法令的規範,如建立個人資料保護機制並事前告知取得消費者蒐集之同意為宜。

個人資料受害該向誰求償?

何謂日本「尖端大型研究設施」?

  所謂「尖端大型研究設施」,系指日本《特定尖端大型研究設施共用促進法》(特定先端大型研究施設の共用の促進に関する法律)中,由國立研究法人所設置,並受該法規範之研究設施。   該法之目的係在設置被認為不適合於國立實驗研究機關,或進行研究之獨立行政法人中重複設置之以高額經費購置的該研究領域中最尖端技術之研究設施設備,並於該研究領域中進行多樣化研究之活用,以發揮其最大之價值。   目前受到該法規定的研究設施包括特定同步輻射研究設施,其包含了「SPring-8」及「SACLA」等兩座大型同步輻射研究設施,與特定超級電腦設施,亦即超級電腦「京」,以及包括了高強度質子加速器「J-PARC」之一部的特定中子輻射研究設施;以SPring-8為例,該設施之網站上登載有使用情報、使用申請及參考資料等,供欲使用該設施之研究人員參考。

全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任

全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。

TOP