據猶他州政府檔案存取及管理法(the Government Records Access and Management Act,簡稱GRAMA),該州選民註冊資料及投票歷史紀錄檔案屬於得公開資訊,據此,猶他州民得給付1,050元美金並填寫申請表,向政府申請取得全州選民數據庫之資料。
上開法令作為申請之依據,UTvoters.com創辦人Tom Alciere透過向該州政府申請並取得該州選民資訊後,建置該網站。透過該網站系統,任何人可查詢該州選民選舉資料。Tom Alciere指出,倘選民認為他們資訊被公布網站上並不合理,他們可以要求移除網站上的資訊,但這些資訊仍被記錄在該州數據庫中,且仍可被公開取得。
該州負責選舉主任委員Mark Thomas指出,倘能證明自身安全因資料遭公開而陷入危險,或具有某些情況如屬政府官員(例如州市長或參議員)等資料,基於安全考量,得移除數據庫之資料。
該州選民認為他們資料如同信用卡被竊一般的遭到洩漏,且不應被公開於網路;該州參議員Karen Mayne亦認為該不合理制度須做改變,政府一方面應鼓勵民眾參與投票,但非在過程中犧牲與公開選民的個人資料。
相關修正案之建議,限制該類資料僅能作為「政治」上的使用,且應排除與網路連結。若違反,則將面臨6個月以上有期徒刑及1,000美元以上之罰金。
陽明交通大學於2025年7月11日,透過律師向美國商標審判及上訴委員會(The Trademark Trial and Appeal Board,簡稱TTAB)提出答辯主張,主張其商標(縮寫為NYCU)並未和紐約大學的商標(縮寫為NYU)有混淆誤認之虞,以下將以此案為例,說明實務上如何運用DuPont Factors(又稱杜邦分析要件)判斷混淆誤認,品牌商標命名、註冊等階段時應注意的風險和實務上可行的因應措施。 杜邦分析要件係源於1973年的E.I. DuPont de Nemours & Co. v. Celanese Corp.案,用13個判斷分析要件檢視是否有商標混淆誤認的情形,是美國審查實務,或者相關商標爭議判斷,最常引用的判斷標準,並視個案情形引用對應要件。 本案陽明交通大學提出答辯主張包括:NYU與NYCU字母、意義等整體印象不同(第1項);NYU提供美國正式教育學位課程,而NYCU僅限於台灣課程,未提供美國正式學位,雙方提供不同之教育服務(第2項);NYCU僅有限參與國際會議並未於美國招生,通路未重疊,且消費族群均為高知識與謹慎決策者(第3~4項);無任何實際混淆的證據(第7項);NYCU長期使用該縮寫於國內外學術交流與排名中,未發生混淆而顯示兩者商標可共存(第8項);NYCU合法註冊校名之縮寫,具有使用與排他性權利,無混淆意圖亦未仿冒(第11項);雙方市場截然不同,混淆風險極低(第12項),以及若不准NYCU使用將造成教育機構正常名稱縮寫受限,牽涉公共利益、學術發展與合理使用(第13項)等。 品牌企業或學研法人不論從命名、商標註冊階段,甚至到商標異議、撤銷、侵權爭議等判斷,不可忽視商標之混淆誤認風險,將可能被迫改名、下架商品或服務調整行銷素材、重啟品牌命名流程等,耗費人力、時間或經費。因此,務必完善品牌商標管理機制,確保能掌握混淆誤認之判斷原則、階段性評估檢核,以降低品牌撞名或近似他人註冊商標之情形,進而鞏固品牌價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
德國向歐盟提交《人工智慧白皮書-歐洲卓越與信任概念》及《人工智慧,物聯網和機器人技術對安全和責任之影響報告》意見德國聯邦政府於2020年6月29日,針對歐盟執委會於2020年2月19日公布的《人工智慧白皮書-歐洲卓越與信任概念》(Weißbuch zur Künstlichen Intelligenz – ein europäisches Konzept für Exzellenz und Vertrauen)及《人工智慧,物聯網和機器人技術對安全和責任之影響報告》(Bericht über die Auswirkungen künstlicher Intelligenz, des Internets der Dinge und der Robotik in Hinblick auf Sicherheit und Haftung) 提交意見,期能促進以負責任、公益導向、以人為本的人工智慧開發及使用行為,並同時提升歐盟的競爭力及創新能力。 歐盟執委會所發布的人工智慧的白皮書及人工智慧對安全和責任的影響報告,一方面可促進人工智慧使用,另一方面則藉此提醒相關風險。本次意見主要集結德國聯邦經濟與能源部、教育與研究部、勞動與社會事務部、內政、建築及社區部以及司法與消費者保護部之意見。德國政府表示,投資人工智慧為重要計畫之一,可確保未來的創新和競爭力,以及應對諸如COVID-19疫情等危機。最重要的是,可透過人工智慧的應用扶持中小型公司。然而在進行監管時,必須注意應促進技術發展而非抑制創新。 在《人工智會白皮書-歐洲卓越與信任概念》中指出,人工智慧發展應在充分尊重歐盟公民的價值觀和權利的前提下,實現AI的可信賴性和安全發展之政策抉擇,並於整體價值鏈中實現「卓越生態系統」(Ökosystem für Exzellenz),並建立適當獎勵機制,以加速採用AI技術為基礎之解決方案。未來歐洲AI監管框架將創建一個獨特的「信任生態系統」(Ökosystem für Vertrauen),並確保其能遵守歐盟法規,包括保護基本權利和消費者權益,尤其對於在歐盟營運且具有高風險的AI系統更應嚴格遵守。此外,應使公民有信心接受AI,並提供公司和公共組織使用AI進行創新之法律確定性。歐盟執委會將大力支持建立以人為本之AI開發方法,並考慮將AI專家小組制定的道德準則投入試行階段。德國政府指出,除了要制定並遵守歐洲AI的監管政策外,應特別注重保護人民之基本權,例如個人資料與隱私、消費者安全、資料自決權、職業自由、平等待遇等,並呼籲國際間應密切合作,運用人工智慧技術克服疫情、社會和生態永續性等挑戰。另外,德國政府亦支持將人工智慧測試中心與真實實驗室(監理沙盒場域)相結合,以助於加速企業實際運用,也將帶頭促進AI在公部門之運用。 在《人工智慧,物聯網和機器人技術對安全和責任之影響報告》中則指出,歐洲希望成為AI、IoT和機器人技術的領導者,將需要清楚、可預測的法律框架來應對技術的挑戰,包括明確的安全和責任框架,以確保消費者保護及企業合法性。AI、IoT和機器人技術等新數位技術的出現,將對產品安全性和責任方面出現新挑戰,而在當前的產品安全法規上,缺乏相關規範,特別是在一般產品的安全指令,機械指令,無線電設備指令等,未來將以一致地在各框架內針對不同法律進行調修。在責任方面,雖然原則上現有法令尚仍可應對新興技術,但人工智慧規模的的不斷變化和綜合影響,將可能增加對受害者提供賠償的困難度,導致不公平或效率低下的情形產生,為改善此一潛在不確定性,可考慮在歐盟層級調修產品責任指令和國家責任制度,以顧及不同AI應用所帶來的不同風險。德國政府除了支持歐盟作法,在創新與監管取得平衡,更強調應不斷檢視產品安全和產品責任法是否可滿足技術發展,尤其是對重要特定產業的要求,甚至修改舉證責任。並可透過標準化制定,加速人工智慧相關產品與服務的開發。另外,應依照風險高低擬定分類方法,並建議創建高風險AI系統之註冊與事故報告義務,以及相關數據保存、記錄及資料提供之義務,針對低風險AI應用則採自願認證制度。
日特許廳開始提供WIPO資料庫商標公報資訊日本特許廳公開表示,從本年度11月27日起,將開始提供日本商標公報訊給世界智慧財產權機構(WIPO)所建置的世界最大規模之商標資料庫「Global Brand Database」,今後民眾將可以在前述資料庫中搜尋到登載有日本商標註冊資訊的商標公報。如此一來,日本廠商將可以在一個資料庫中完整搜尋到包含日本商標在內的商標資訊,對於日本廠商擬定全球品牌策略將可以提供許多便利。 「Global Brand Database」是WIPO所免費提供的資訊供應服務,在這個資料庫上,一般民眾可以公開使用,進行商標申請案或已註冊商標的檢索,及查照詳細資訊。在2011年3月WIPO啟動這項服務時,當時還只有累積國際註冊商標、依里斯本條約登記的原產地名稱及依巴黎公約登記的國家徽章等,從2013年2月開始,也陸續放入世界各國商標申請案或已註冊商標的資訊。如今,在「Global Brand Database」上已經可以查到16個國家商標主管單位的商標資訊。在2014年11月20日的時間點上,該資料庫約存放有1400萬筆的資訊,而從2014年5月起也開提供了上傳圖片檔案檢索類似圖形商標的圖像檢索功能。 目前參加「Global Brand Database」資料庫資訊提供服務的國家包括美國、澳州、加拿大、新加坡、紐西蘭、瑞士、菲律賓、丹麥、以色列、蒙古、埃及、柬埔寨、愛沙尼亞、阿聯酋、阿曼、阿爾及利亞等16個國家,中國、韓國並未參加。
「巨量資料應用」當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。 在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。