世界經濟論壇(World Economic Forum, WEF)於2022年11月15日發布《贏得數位信任:可信賴的技術決策》(Earning Digital Trust: Decision-Making for Trustworthy Technologies),期望透過建立數位信任框架(digital trust framework)以解決技術開發及使用之間對數位信任之挑戰。 由於人工智慧及物聯網之發展,無論個人資料使用安全性還是演算法預測,都可能削弱人民對科技發展之信賴。本報告提出數位信任路線圖(Digital trust roadmap),說明建立數位信任框架所需的步驟,以鼓勵組織超越合規性,指導領導者尋求符合個人與社會期望之全面措施行動,以實現數位信任。路線圖共分為四步驟: 1.承諾及領導(commit and lead):數位信任需要最高領導階層之承諾才能成功,故需將數位信任與組織戰略或核心價值結合,並從關鍵業務領域中(例如產品開發、行銷、風險管理及隱私與網路安全)即納入數位信任概念。 2.規劃及設計(plan and design):透過數位信任差距評估(digital trust gap assessment)以瞭解組織目前之狀態或差距,評估報告應包括目前狀態說明;期望達成目標建議;治理、風險管理與合規性(governance, risk management and compliance, GRC)調查結果;將帶來之益處及可減輕之風險;計畫時程表;團隊人員及可用工具;對組織之影響等。 3.建立及整合(build and integrate):實現數位信任需關注人員、流程及技術等三大面向。首先需確保人員能力、達成該能力所需之資源,以及人員溝通與管理;第二,定義組織數位信任流程,包括制定計劃所需時程、預算及優先實施領域,調整目前現有管理流程,並識別現有資料資產;最後,針對技術使用,可考慮使用AI監控、雲端管理系統以及區塊鏈等,以監測資料之使用正確性及近用權限管理。 4.監控及滾動調整(monitor and sustain):建立數位信任框架後,需持續建構相關績效及風險評估程序,以確保框架之穩定,並根據不斷變化的數位信任期望持續改善,以及定期向董事會報告。
由Meta案看數位資料商業化面臨之跨國問題於2023年5月22日愛爾蘭資料保護委員會(Ireland's Data Protection Commission, DPC)對於Facebook的母公司Meta將歐盟境內資料傳輸到美國的行為做出開罰12億歐元的決定,並暫停資料跨境傳輸行為,再次引起了各界對於資料跨境傳輸的關注。 針對跨國提供網路服務的企業,如何確保企業處理資料的方式可以符合多國的法規要求,向來是一困難的問題。自從2015年「安全港隱私準則」(Safe Harbour Privacy Principles)被歐盟法院宣告失效後,美國與歐盟試圖就資料跨境傳輸重新達成一個可符合雙方要求的框架,包含2020年被歐盟法院宣告無效的「隱私盾框架」(EU-US Privacy Shield Framework),而2022年3月雙方達成原則性同意的歐盟美國資料隱私框架(EU-U.S. Data Privacy Framework, DPF),惟就美國於同年10月發布用以實施之行政命令(EO 14086),亦於2023年5月被歐洲議會認為對於歐盟境內資料的保護不足。 2023年6月8日英國跟美國共同發布建立英美資料橋(UK-US data bridge)的聯合聲明,以建立起英美之間的資料流動機制,但該英美資料橋是基於歐盟美國資料隱私框架做進一步的擴展,能否符合歐盟對於資料保護的要求,目前尚無法預期。 目前的商業模式中資料跨境傳輸是難以避免的現實困境,各國亦就資料跨境傳輸建立框架,企業需持續關注自身營業所在地之法規變化,以即時因應調整自身管理機制。 本文同步刊登於TIPS網站(https://www.tips.org.tw/)
美國商務部國家電信和資訊管理局呼籲透過第三方評測提高AI系統透明度2024年3月27日,美國商務部國家電信和資訊管理局(National Telecommunications and Information Administration, NTIA)發布「人工智慧問責政策報告」(AI Accountability Policy Report),該報告呼籲對人工智慧系統進行獨立評估(Independent Evaluations)或是第三方評測,期待藉此提高人工智慧系統的透明度。 人工智慧問責政策報告就如何對人工智慧系統進行第三方評測提出八項建議作法,分別如下: 1.人工智慧稽核指引:聯邦政府應為稽核人員制定適合的人工智慧稽核指引,該指引須包含評估標準與合適的稽核員證書。 2.改善資訊揭露:人工智慧系統雖然已經應用在許多領域,但其運作模式尚缺乏透明度。NTIA認為未來可以透過類似營養標籤(Nutrition Label)的方式,使人工智慧模型的架構、訓練資料、限制與偏差等重要資訊更加透明。 3.責任標準(Liability Standards):聯邦政府應盡快訂定相關責任歸屬標準,以解決現行制度下,人工智慧系統造成損害的法律責任問題。 4.增加第三方評測所需資源:聯邦政府應投入必要的資源,以滿足國家對人工智慧系統獨立評估的需求。相關必要資源如: (1)資助美國人工智慧安全研究所(U.S. Artificial Intelligence Safety Institute); (2)嚴格評估所需的運算資源與雲端基礎設施(Cloud Infrastructure); (3)提供獎金和研究資源,以鼓勵參與紅隊測試的個人或團隊; (4)培養第三方評測機構的專家人才。 5.開發及使用驗證工具:NTIA呼籲聯邦機關開發及使用可靠的評測工具,以評估人工智慧系統之使用情況,例如透明度工具(Transparency Tools)、認驗證工具(Verification and Validation Tools)等。 6.獨立評估:NTIA建議聯邦機關應針對高風險的人工智慧類別進行第三方評測與監管,特別是可能侵害權利或安全的模型,應在其發布或應用前進行評測。 7.提升聯邦機關風險管控能力:NTIA建議各機關應記錄人工智慧的不良事件、建立人工智慧系統稽核的登記冊,並根據需求提供評測、認證與文件紀錄。 8.契約:透過採購契約要求政府之供應商、承包商採用符合標準的人工智慧治理方式與實踐。 NTIA將持續與利害關係各方合作,以建立人工智慧風險的問責機制,並確保該問責報告之建議得以落實。
汽車經銷公司營業秘密案顯示,僅資安手段不足以構成營業秘密的保密措施本文參照2025年3月21日紐約東區地方法院的Superb Motors Inc. v. Deo一案,提醒企業:在數位化與資料外洩風險日增的時代,即使資訊具有高度價值,若僅採取防火牆(Firewall)、帳號密碼之技術手段,而未採取具體之書面規範或契約之營業秘密保密措施者,法院仍可能認定不足以符合營業秘密之合理保密措施要件。 本案源於2023年8月16日,Superb汽車經銷公司控訴前股東Deo離開公司後,擅自使用其客戶名單與核心系統Dealer Management System(下稱DMS),協助競爭對手拓展業務、挖角員工,並導致前公司客戶流失。Superb公司主張,公司投入逾12萬美元整合DMS系統,且以150萬美元的廣告與行銷策略蒐集並以多年經驗建構完整的客戶資料庫,屬於具競爭優勢的關鍵資產。 法院認為,Superb公司僅以防火牆、帳號密碼限制資訊存取,期待員工自發性保密,而未提供任何形式的保密協議或明確政策文件,此舉不足以構成合理保密之手段。法院認為,營業秘密保護法所要求的保密措施,需具備可執行的契約條款,例如:保密協議或公司內部保密政策規範。 為助於訴訟舉證、減少因人力流動可能發生的資料外洩風險,企業不能僅依賴科技工具,而應積極主動地搭配企業政策與契約等法律文件。參考美國實務,建議企業採取下列營業秘密管理作法: 1.與有權接觸敏感資訊之員工、顧問簽訂保密協議,且企業應定期檢視與修訂保密條款,以確保條款符合最新的勞動法相關要求並具備可執行性。 2.建立公司內部保密制度與定期教育訓練,以確保員工理解公司要求之保密義務。 本案顯示出法院對「營業秘密合理保密措施」認定的標準,不僅留意保密技術複雜性,更著重於企業採取的保密措施(如保密契約)是否具有法律上的拘束力。 資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」已涵蓋前述美國實務建議之管理作法,我國企業如欲精進系統化的營業秘密管理作法,可以參考此規範。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)