英國內閣辦公室(Cabinet Office)於2013年10月29日提出「緊急應變與復原準則:依循2004年國民緊急應變法之不成文準則」(Emergency Response and Recovery: Non statutory guidance accompanying the Civil Contingencies Act 2004),針對「應變與復原」作相關規定,以補充內閣辦公室於2006年1月1日提出「緊急準備規則」(Emergency Preparedness)對複合式緊急管理(Integrated emergency management, IEM)規定的不足之處。
英國「2004年國民緊急應變法」(The Civil Contingency Act 2004),為英國處理緊急事件之主要依據,「緊急應變與復原準則」即根據「2004年國民緊急應變法」制訂。此規則於「緊急應變章節」規定地方政府之緊急事件依嚴重程度區分為三級:銅(Bronze),僅需要操作指揮(Operational)、銀(Silver),需要策略指揮 (Tactical)、金(Gold),需要戰略指揮(Strategic),用以判斷是否區需要跨機關合作來因應緊急事故。如事故屬於重大緊急災難時,則屬於需要跨機關協調合作,藉由層級指揮及指令下達掌控應變程序與資訊傳遞,以因應長期及廣泛區域之災難。中央政府的權責在於全國性重大緊急事件,並且災難發生時之首相為最高行政首長,最高緊急機構為「內閣緊急應變會議」(Cabinet Office Brifing Rooms, COBR,又稱為眼鏡蛇),同時國民緊急秘書處(Civil Contingencies Secretariat, CCS)也需要協調跨部門及跨機構事務。
為提升災難應變與復原效率,2013年10月的「緊急應變與復原準則」,說明藉由地方的地方抗災議會(Local Resilience Forum)到中央等全國性之系統與網路串聯以傳遞緊急訊息,並建立三種層級之共同認知資訊圖像(Common Recognized Information Picture, CRIP),包括地方層級、區域以及國家級。此項系統必須足以傳遞並收集來自各方的大量資訊、能評估所收集各資料之性質,如緊急性、關聯性、說明性及可使用性等,並且能夠使大眾週知。
然,處理資料的過程仍有可能面臨數種問題,包括各機關之資料不同、判斷不同、理解錯誤及通訊超載等。2013年10月緊急應變與復原準則亦說明建立資訊管理系統(information management system)並安裝至多機構緊急管理中;而民間機構也應作為多機構之一環,並擔任資訊管理機構。同時,在共享資料之同時,必須注意資料保護,因此必須遵守「資料保護與共享-緊急計畫人與應變人準則」(Data Protection and Sharing-Guidance for Emergency Planner and Responders)。英國地域性與台灣近似,皆屬易於發生水患的國家,英國在緊急災難之應變於各方面的法制皆以趨於完善,殊值得持續觀察未來發展方向。
英國於2018年7月通過自動與電動車法(Automated and Electric Vehicles Act 2018),對自動與電動車輛之定義、保險議題以及電動車充電基礎設施進行規範。 針對自駕車之保險議題,該法採取「單一保險人模式」(Single Insurer Model),無論是駕駛人自行駕駛或自動駕駛,駕駛人均應購買自駕車保險,讓所有用路人對於可能之安全事故均有保險可涵蓋並追溯責任。本法其他重要規定如下; 本法未直接賦予自駕車(Automated vehicle)明確定義,管理方式係由主管機關自行認定並建立清單。本法僅要求清單內之車輛應設計或調整為至少於某些特定狀況能安全行駛之自動駕駛模式。 已納保之自駕車行駛時所造成之損害,將由車輛之承保公司負擔損害賠償責任。 未納保之自駕車若發生事故,則車主應負擔損害賠償責任。 若由保險人負損害賠償責任,則受害人將可依現行法規提出損害賠償請求。保險人則可依普通法與產品責任相關規定,向應對事故負責之單位或個人提出損害賠償請求。 於電動車充電基礎設施之部分,該法之目的則是確保公共充電站適用於所有市面上之電動車輛,並就費用、付費方式以及相關安全標準進行規範,以增進消費者之信任。該法第20條並授權主管機關訂定相關授權辦法,以達上述目標。
販賣或製造色情光碟的人並非不可原諒之徒色情光碟在澳洲高中校園內的網路流傳,且以一片美金五元的價格販售,其光碟的內容有女性被性虐待的畫面,例如撒尿在女生身上,或燒女生頭髮等。澳洲警方警告,任何學生觀看或下載這些色情影片將處以罰款。 維多利亞警局資深警官麥可‧亨瑞表示,「罰款並不能阻止這些色情的影片。」色情犯罪偵查小組為了調查色情光碟在校園流竄的問題,整夜和這些青少年進行面談,以了解色情光碟對他們的影響。麥可說:「這些色情光碟影響青少年對於性的想法,而且現在並沒有任何人因為此事被罰款,即使要罰款,也要有證據來界定罰款的金額。」 澳洲法院總理約翰‧南斯說道:「販賣或製造這些色情光碟是一種可怕且無恥的行為,但我們不能因為我們的感受而以刑罰作為報復的工具,因為這些青少年年紀尚輕,而且有些人是因為同儕的壓力而犯罪的,我們應該試著體諒並且確定他們的人生不會因此次事件而留下不可抹滅的印記。」 因為即使以法律對販賣或製造色情光碟的青少年施以懲罰,在他們人生的紀錄中留下一個可恥的印記,但這些懲罰對於改善他們的未來,並沒有任何助益。
馬來西亞通過修正《個人資料保護法》馬來西亞個人資料保護委員會(Personal Data Protection commissioner,下稱個資保護委員會)於2023年度收受與個人資料(下稱個資)濫用、外洩相關申訴案件數量達779件,成長數量令人憂心。為確保對於個資保護規範能與國際標準發展同步,並加強個資遭洩漏時即時採取應變措施等相關政策,以解決前述憂心狀況,數位部(Ministry of Digital)於2024年7月10日提出《個人資料保護法》(Personal Data Protection Act 2010, PDPA)修正案,並於同年7月16日經下議院(Dewan Rakyat,馬來語直譯)表決通過。 本次PDPA修正重點包含: 1.設立個資保護官(data protection officer, DPO)制度:強制要求蒐集、處理、利用個資之資料控管者(data controller),及受資料控管者委託而實質處理個資之資料處理者(data processor),均需指派個資保護官。 2.擴張對於敏感性個資(sensitive personal data)定義:與個人身體、生理或行為特徵相關之技術處理所生個資(即生物辨識資料),皆屬之。 3.制訂個資外洩通報制度:強制要求發生個資外洩時須通報個資保護委員會,以及可能受到任何重大損害之個資當事人,惟對於「重大損害」尚未有明確定義。 4.導入資料可攜性:在遵守技術可行性(technical feasibility)與資料格式相容性(data format compatibility)之情境下,允許資料控管者之間在當事人要求下進行資料傳輸。 5.資料處理者的合規遵循義務:舊法僅要求資料控管者須遵守PDPA所規定的安全原則(security principle);新法則擴及要求資料處理者亦有安全原則之合規遵循義務。 6.提高罰則:舊法對於違反個資保護原則者,最高僅得處300,000馬幣和/或2年監禁;新法提高罰則最高得處1,000,000馬幣和/或最高3年監禁。 7.跨境傳輸規範修正:原則允許資料控管者將個資傳輸至馬來西亞以外,惟應採取適當措施確認及確保資料接收方保護個資之水準與馬來西亞個資法程度相當;並將跨境白名單制度調整為黑名單制度,不得傳輸至政府公布黑名單所列地區。 馬來西亞數位部本次修正PDPA,彰顯該國政府對個資保護之重視,惟關於任命個資保護官資格要求、個資外洩通報重大程度標準等細部規範,則仍須待修正案通過後,經個資保護委員會發布相關指引再行釐清。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).