中國大陸國家工商行政管理總局為加強網路交易消費者保護,在2014年03月15日起實施「網絡交易管理辦法」,就企業經營者責任新設多項規定。特別是針對第三方交易平台業者,辦法要求其建立交易規則、消費資訊保存、不良訊息處理、消費糾紛調解管道等管理制度,以確保平台服務品質。同时要求平台業者建立審查制度,對申請進入平台從事經營活動之賣家,進行身分審查與建檔,透過以網管網,達成有效率的網路身分管理。
另外,為確保網路交易市場秩序、公平競爭,本辦法亦例示多項不公平競爭行為態樣,包括任意調整信用評價、傷害他人商譽等影響交易秩序之欺罔行為,皆受到明文禁止。甚至在商標侵權情況中,平台在接收到侵權通知時,必須積極採取必要措施,否則就因此損害擴大部分,將與侵權行為人共同承擔連帶責任。
考量在兩岸近期簽署之「海峽兩岸服務貿易協議」中,陸方已承諾對台開放「在線數據處理與交易處理業務」之電子商務網站經營,待將來協議完成相關程序生效後,台灣電子商務業者在進入大陸市場經營交易平台時,勢必受到本辦法規範,實應留意相關要求以避免觸法。
歐盟議會於2007年5月24日正式通過「視訊媒體服務指令」 (Audiovisual Media Service Directive) 以取代原有的「電視無國界指令」(Television Without Frontiers Directive)。新指令對於視訊媒體服務的規範不僅包括傳統的電視服務,尚擴及至透過電腦網路及隨選服務系統等傳輸的視訊媒體服務。此外,新指令要求視訊服務提供者必須向閱聽人揭露置入性行銷手法的運用。 有關新指令是否應適用於播客(podcasting)與網路上非商業活動性質影片(如網路使用者上傳至YouTube網站上的短片)的爭辯。歐盟媒體委員會強調,新指令之主要目的雖在於將所有新興電視服務業納入規範,但並不是涵蓋所有在網路上播放的視訊媒體內容。執行長Viviane Reding認為新指令為視訊服務供應者奠定一個有利的競爭架構,以避免因過多的管制而妨礙電視技術與服務之匯流發展。 新指令具有幾項重要特點,首先是擬透過單一完整的法律架構規範所有視訊媒體服務業,以降低監管成本;其次,擬定現代化的電視廣告管理規則,以改善視訊媒體節目製作的資金籌措管道;最後,其他諸如鼓勵媒體服務供應者致力於提昇視覺與聽力障礙者的近用能力亦是本指令所重視者。 據新指令之規定,歐盟會員國有兩年時間將新指令落實為國內法,預期於2009年底在歐洲全面適用。
歐盟資通安全局(ENISA)提出資通安全驗證標準化建議歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)(舊稱歐盟網路與資訊安全局European Union Agency for Network and Information Security)於2020年2月4日發布資通安全驗證標準化建議(Standardisation in support of the Cybersecurity Certification: Recommendations for European Standardisation in relation to the Cybersecurity Act),以因應2019/881歐盟資通安全局與資通安全驗證規則(簡稱資通安全法)(Regulation 2019/881 on ENISA and on Information and Communications Technology Cybersecurity Certification, Cybersecurity Act)所建立之資通安全驗證框架(Cybersecurity Certification Framework)。 受到全球化之影響,數位產品和服務供應鏈關係複雜,前端元件製造商難以預見其技術對終端產品的衝擊;而原廠委託製造代工(OEM)亦難知悉所有零件的製造來源。資通安全要求與驗證方案(certification scheme)的標準化,能增進供應鏈中利害關係人間之信賴,降低貿易障礙,促進單一市場下產品和服務之流通。需經標準化的範圍包括:資訊安全管理程序、產品、解決方案與服務設計、資通安全與驗證、檢測實驗室之評估、資通安全維護與運作、安全採購與轉分包程序等。 ENISA認為標準化發展組織或業界標準化機構,在歐盟資通安全之協調整合上扮演重要角色,彼此間應加強合作以避免重複訂定標準。目前有三組主要國際標準可構成資通安全評估之基礎: ISO/IEC 15408/18045–共通準則與評估方法:由ISO/IEC第1共同技術委員會(JTC1)及第27小組委員會(SC27)進行重要修訂。 IEC 62443-4-2–工業自動化與控制系統之安全第4-2部分:作為工業自動化與控制系統元件的技術安全要求。 EN 303-645–消費性物聯網之資通安全:由歐洲電信標準協會(ETSI)所建立,並與歐洲標準委員會(CEN)、歐洲電工標準化委員會(CENELEC)協議共同管理。 然而,資通訊產品、流程與服務種類繁多,實際需通過哪些標準檢驗才足以證明符合一定程度的安全性,則有賴驗證方案的規劃。為此,ENISA亦提出資通安全驗證方案之核心構成要件(core components)及建構方法論,以幫助創建歐盟境內有效的驗證方案。
Codex研提進口食品含有未經核准之GMO含量的技術指導原則由聯合國農糧組織及世界衛生組織共同成立的The Codex Alimentarius Commission (Codex),刻正研提一份與GMO有關的重要技術指導原則,以協助各國評估並管控進口食品是否含有未經核准的GMO或由未經核准的GMO所製程的風險,藉此降低食品貿易的障礙。 關於未經核准的GMO,目前歐盟採取的零容忍度政策(zero-tolerance policy),亦即,進口之食品或飼料中,絕對不能含有未經核准的GMO或由未經核准的GMO所製程,至於一般所知的歐盟0.9%的GMO標示義務,是適用在經依法核准上市的GMO,若因技術上不可避免的原因而使非基改產品含有此GMO之可容忍界線。 根據Codex調查,許多GMO的上市審查在歐盟受到延宕,但這些GMO在歐盟以外其實很多都已經被其他國家核准,或歐盟的技術審查單位—食品安全管理局(European Food Safety Authority, EFSA)也已提出正面的安全評估意見,但歐盟執委會卻遲遲未完成行政審查,造成在歐盟進口的食品或飼料中若含有這些GMO,即被認定為未經核准而影響產品之進口。 鑑於歐盟的GMO管理與出口國的GMO管理有重大的制度面差異,Codex認為此一制度面的衝突若不尋求解決,未來將越演越烈,影響的作物範圍也會越來越廣,因而Codex才會思考制定相關的技術指導原則,解決某GMO可能在一個或多個國家已經被核准上市,但在進口國還未經核准上市,而進口非基改食品或飼料中卻含有這些GMO的問題,目前Codex預計在2008年7月提出相關的技術指導原則建議。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)