中國大陸國家工商行政管理總局為加強網路交易消費者保護,在2014年03月15日起實施「網絡交易管理辦法」,就企業經營者責任新設多項規定。特別是針對第三方交易平台業者,辦法要求其建立交易規則、消費資訊保存、不良訊息處理、消費糾紛調解管道等管理制度,以確保平台服務品質。同时要求平台業者建立審查制度,對申請進入平台從事經營活動之賣家,進行身分審查與建檔,透過以網管網,達成有效率的網路身分管理。
另外,為確保網路交易市場秩序、公平競爭,本辦法亦例示多項不公平競爭行為態樣,包括任意調整信用評價、傷害他人商譽等影響交易秩序之欺罔行為,皆受到明文禁止。甚至在商標侵權情況中,平台在接收到侵權通知時,必須積極採取必要措施,否則就因此損害擴大部分,將與侵權行為人共同承擔連帶責任。
考量在兩岸近期簽署之「海峽兩岸服務貿易協議」中,陸方已承諾對台開放「在線數據處理與交易處理業務」之電子商務網站經營,待將來協議完成相關程序生效後,台灣電子商務業者在進入大陸市場經營交易平台時,勢必受到本辦法規範,實應留意相關要求以避免觸法。
根據衛報指出,英國最新推出的手機行動定位追蹤服務恐將引發新一波個人隱私侵害爭議。該定位服務由業者World-Tracker提供,只要將欲追蹤的手機號碼輸入該服務網頁,就會有一通簡訊發到該手機介面上,詢問手機持有人是否希望被追蹤。若手機持有人以簡訊向系統回覆同意,World-Tracker就會在該服務網站上顯示出該手機位置地圖(目前使用Google地圖介面),精確值在50到500公尺。當手機移動,系統亦會隨時偵測手機位置並在網頁上顯示移動狀況。 經由電腦或手機等任何能上網的終端裝置即可使用該服務,目前能支援該服務的系統業者則包括Vodafone、O2、T-Mobile以及Orange。但已有人質疑,World-Tracker所提供的該項服務是否符合英國Ofcom所規範的個人隱私權保護正當程序,即定期發簡訊確認手機持有人之同意。此外,該服務將使非檢調機關得在未取得手機真正使用人同意之情形下,對手機位置進行監視,此亦有違反英國調查權法之虞(The Regulation of Investigatory Powers Act)。
美國加州於6月28日通過新版個資隱私法規加州立法體系在2018年6月28日通過了美國最嚴格的個人資料隱私法規,該法案無異議通過,並已經加州州長Jerry Brown簽署同意,將於2020年1月1日施行,以賦予科技產業修正其內部政策的緩衝期間。 該法案之所以如此速戰速決,據媒體解讀是為了避免該法案內容成為加州11月選舉併公民投票之公投提案的一部分。如以公投方式通過這部法規,日後修正時將重新以公民投票進行,有造成修法困難的疑慮;而以立法者立法方式通過這部法規,賦予立法者有對其修訂改正權限,於日後能以一般修法程序進行修法。 該法案內容與2018年5月25日實施的歐洲GDPR規範相近似,將造成加州原先隱私權規範些許改變,與倡議最初法案不同的地方在於,揭露接受個資第三人的相關資料時需揭露該第三者之類型(category)而非其身分。 隨著本年度加州消費者隱私保護法(The California Consumer Privacy Act)的修法,大型科技公司如Google和Facebook等蒐集有大量消費者個人資料者,都將受到重大影響,依據該法,一般使用者可以向企業確認被蒐集的個資種類以及個資販賣流向,亦可以請求中止個資的蒐集及販賣,提升了一般使用者在以往對於個資使用上的地位。 自歐洲GDPR規範實施以來至目前,美國聯邦法尚未有相應強度之規範,本次加州修法可認係GDPR實施以來美國國內第一部因應而修正之法律。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
什麼是「瑞典創新夥伴計畫」?瑞典創新夥伴計劃(Innovation partnership programmes),起源於瑞典企業與創新部下屬的國家創新委員會所強調的三個社會挑戰:數字化,環境氣候變遷和人口老齡化。創新夥伴計畫最重要的任務,在於公部門、企業界和學術界間的交流,為社會挑戰尋求創新解決方案,同時加強瑞典的全球創新和競爭力。創新夥伴計畫具體可分為五項重點發展領域。 一、下一代交通:目標是成為運輸效率更高的社會,以智能方式運輸,使用更多的節能型車輛。 二、智慧城市:智慧城市係利用訊息和通訊技術提高政策服務的質量,提升效能和互動性,降低成本和資源消耗,改善公民與政府的聯繫。 三、循環經濟:開創世界資源的新途徑,目標是可持續和無毒的原料生產。包括糧食供應管理、能源問題、及循環生物經濟轉型。 四、生命科學:透過醫療、商業和學術界合作,研發創新藥物,使健保和醫療技術惠及社會,並運用數位技術為強化。 五、新材料:為刺激瑞典工業的廣泛數位化運用,必須在各種成熟行業、新創公司和研究環境中加強夥伴關係,提升瑞典的產業競爭力。