所謂的技術研究組合乃以試驗研究為目的,以「開發業界共同關鍵技術」為主要目的之非營利性質法人,日本至今共成立了兩百多個研究組合,主要透過專法創設之特殊性質法人制度,並賦予技術研究組合諸多稅賦優惠。在組織上,賦予技術研究組合亦有組織變更、分割及合併之可能,技術研究組合得以分割或轉換為公司,將研究成果直接轉化為產業化應用,技術組合之特色有以下幾點: 1.研究組合須至少二人以上之組合員發起:除企業公司外,日本國立大學法人與產業技術研究法人亦可為組合員 ,凡從事產業技術研發政府研究單位與國立大學,皆可將人力資源、研發成果投入與產業合作之技術研發活動,並從事進行試驗研究管理成果、設施使用與技術指導等事業活動 2.研究組合研發活動可運用「產業合作」、「產官學共同研發」兩種模式進行:未來技術研發組合進行組織變更成為股份有限公司時,大學或產業技術研究法人組合員亦可獲得公司股份,增加學研界加入技術研究組合誘因。3.研究組合組織型態彈性利於研發成果事業化應用:技術組合可視情況進行組織變更、合併與分割,就組織型態有更大變更與調整彈性。著眼於技術研究組合若產出相當之研發成果,則可以透過變更為公司型態,迅速將其研發成果予以產業化,亦可透過變更組織型態,而在籌措資金上有更為靈活運用方式使產業活動穩健持續地經營。
Blackberry向法院起訴指控Snap專利侵權2018年4月3日,Blackberry Limited(下稱Blackberry)向美國加州地方法院起訴(18-cv-02693),指控Snap Inc.(下稱Snap)的應用程式Snapchat,侵犯其包括行動裝置地圖改善技術、廣告技術和行動裝置的使用者介面改善技術共6項專利權。Blackberry指出Snapchat的地圖功能侵犯其關於定義與其他活動中用戶相對位置的專利;廣告功能侵犯其推播資訊至行動裝置的專利;通知點(Notification Dot)的未讀訊息計數顯示,侵犯其關於預覽新事件的專利。 Blackberry在今年3月也曾對Facebook提起訴訟,指控其社交平台Whatsapp和Instagram侵犯了Blackberry的專利權。對Snap提出的侵權訴訟中涉及的兩件專利US 8,209,634(下稱'634專利)和US 8,301,713(下稱'713專利),也同樣出現在對Facebook提起的訴訟案件。'634專利是關於通知點(Notification Dot)計數顯示的專利,而'713專利則是關於在傳訊對話中顯示時間資料的專利。 Snapchat是Snap在2011年9月發表的即時通訊應用程式,比Blackberry的通訊應用程式BlackBerry Messenger(下稱BBM)發表時間晚了6年。Blackberry認為其通訊應用程式,至今已成功使得全球有數十億的消費者在行動裝置上使用即時通訊。Snap使用Blackberry的智慧財產權並與Blackberry在即時通訊領域中競爭,分散了BBM的使用者,轉而選擇使用Snapchat,使Snap獲得可觀的不法利益。Blackberry因此向法院主張Snap應彌補其侵權行為對Blackberry所造成的損失。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。
何謂「Regtech」?有別於金融科技(Fintech)著重於運用科技手段使金融服務變得更有效率,因而形成促進金融產業發展的一種經濟產業。在美國源於對2008年金融風暴的恐懼,更傾向在金融科技提升金融服務便利與效率的同時,倡議如何使行政機關在監理過程中更能夠兼顧公平、安全及消費者保護。消費者保障與洗錢防制是行政機關進行金融監理的兩大核心目標,而金融科技服務下的客戶身分核實、信用紀錄與償債能力查核等風險控管措施,在全球發展金融科技方興未艾之際,美國則積極發展監理科技「Regtech」。意指行政機關嘗試透過科技手段有效監理業者的營運動態,如區塊鏈技術(Block-Chain)改變銀行現行運作模式,不僅降低業者營運成本外,更透過科技監理的方式協助業者即時達成法令遵循的目標,縮短法令遵循改善的過渡期間,減輕風險產生的可能。同時,也讓行政機關得以即時預防,並因應任何類似2008年金融風暴之情事的發生。