通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
英國通過《2018自動與電動車法》英國於2018年7月通過自動與電動車法(Automated and Electric Vehicles Act 2018),對自動與電動車輛之定義、保險議題以及電動車充電基礎設施進行規範。 針對自駕車之保險議題,該法採取「單一保險人模式」(Single Insurer Model),無論是駕駛人自行駕駛或自動駕駛,駕駛人均應購買自駕車保險,讓所有用路人對於可能之安全事故均有保險可涵蓋並追溯責任。本法其他重要規定如下; 本法未直接賦予自駕車(Automated vehicle)明確定義,管理方式係由主管機關自行認定並建立清單。本法僅要求清單內之車輛應設計或調整為至少於某些特定狀況能安全行駛之自動駕駛模式。 已納保之自駕車行駛時所造成之損害,將由車輛之承保公司負擔損害賠償責任。 未納保之自駕車若發生事故,則車主應負擔損害賠償責任。 若由保險人負損害賠償責任,則受害人將可依現行法規提出損害賠償請求。保險人則可依普通法與產品責任相關規定,向應對事故負責之單位或個人提出損害賠償請求。 於電動車充電基礎設施之部分,該法之目的則是確保公共充電站適用於所有市面上之電動車輛,並就費用、付費方式以及相關安全標準進行規範,以增進消費者之信任。該法第20條並授權主管機關訂定相關授權辦法,以達上述目標。
歐洲執委會公布安全,清潔,聯網式交通行動議程歐盟執委員會於2018年5月17日公布第三套安全,清潔和聯網式行動議程,該套行動也是最後一套實現歐洲運輸系統現代化的措施。 在2017年9月的國情咨文中,歐盟主席容克提出歐盟產業成為創新,數位化和低碳化均能領先於全球地位的目標。基於此原因,在交通領域執委會2017年5月和11月的提出兩套歐洲行動措施,其目標係讓所有歐洲人都能從享受更安全的交通,更少污染的車輛和更先進的技術解決方案,並同時加強歐盟產業業的競爭力。為此,本次議程聚焦包括未來車輛和基礎設施安全措施綜合政策;重型車輛的二氧化碳標準; 歐洲發展和製造電池的戰略行動計畫以及關於車聯網和自駕車的前瞻性戰略。 而歐洲能源聯盟表示:交通正到跨越一個新的技術前沿,透過能源聯盟的最終提案,將可幫助我們相關產業保持領先地位,並透過大規模研發關鍵技術解決方案,包括潔淨能源之電池技術和建置相關充電基礎設施,以解決碳排放,行車擁堵和降低事故發生。 歐盟氣候行動與能源專員亦表示:所有部門都必須為實現巴黎協議之氣候承諾做出貢獻,這就是為什麼歐盟在有史以來第一次訂定提提高燃油效率標轉和減少碳排放的標準,也為歐洲工業鞏固當前在創新技術領域的領導地位。 歐盟交通運輸專員亦表示:過去一年,執委會在通領域提出許多重大舉措,以提升未來交通安全、乾淨及聯網性。所有措施皆以乾淨且智慧的交通工具目標前進,並尋求各成員國和歐洲議會能支持該雄心壯志。 歐盟內部市場,產業,創業和中小企業專員表示:90%的道路交通事故係出於人為錯誤,目前提出新的強制性安全功能將減少事故的數量,並有利車聯網及自駕車技術發展。 本次議程內容簡介如下 交通安全 從2001年至今道路死亡人數減少已了一半以上,然2017年歐盟境內仍有25,300人交通事故身亡,及13.5 萬人受重傷。因此,歐盟執委會建議新型車輛應配備先進的安全功能,例如用於汽車的先進緊急煞車和車距保持輔助系統或卡車對於周遭行人和用路人之檢測系統。此外,委員會將幫助成員國能在危險路段進行系統性改善建設投資。預計將可挽救多達10,500人的生命,並在2020-2030年期間避免接近6萬人的嚴重受傷,從而為歐盟實現2050年接近零死亡和重傷的長期目標做出貢獻。 交通能源清潔性 歐盟執委會將提出有史以來第一個重型車輛的二氧化碳排放標準來完成低排放交通系統的計畫。此外,2025年,新卡車的二氧化碳平均排放量必須比2019年低15%。2030年,新卡車與2019年相比,必須達到至少30%的減排目標。該目標符合可協助歐盟於巴黎協議所作的承諾,並將使運輸公司(主要是中小企業)透過降低油耗(5年25,000歐元)節省大量成本。為了進一步減少二氧化碳排放,委員將會促進更多的先進低汙染的車輛(例如:改善汽車動力學、輪胎等零件)。此外,委員會將提出一個全面的行動計畫,將有助於在歐洲建立一個具有競爭力和永續性發展的電池生態系統。 車聯網及自駕車 目前越來越多地車輛已配備駕駛員輔助系統,並朝完全自動駕駛車輛目標邁進。因此,該戰略將著眼於道路使用者之間的新協同操作,此將為整個交通系統帶來巨大的利益。運輸將變得更安全,更清潔,更便宜,並使老年人和行動不便的人更方便。此外,執委會建議建立一個全數位化的貨運資訊交換環境,以促進物流運作的數位資訊流。
歐盟執委會授權各國決定GMO的提案遭抨擊 10月環境部長會議將繼續協商歐盟執委會(European Commission)於今(2010)年7月授權歐盟各會員國自行決定禁止或准許基因改造(GM)農作物的提案,過去幾個月來即已不斷遭受外界質疑,在近日(9月27日)召開的農業部長會議上又受到主要歐盟會員國的強烈抨擊;歐盟消費者健康及安全政策部門代表John Dalli表示,這個問題將會在10月14日召開的環境部長會議繼續進行協商。 事實上,歐盟執委會的提案同時引來了GMO支持者與GMO反對者的譴責,他們認為這項議案會給農民與農產業者製造法律上的不確定空間,徒增困擾;此外,綠色和平組織歐盟農業政策執行長Marco Contiero也表示,各會員國都不應該接受執委會的這項提案,反而必須對執委會施加壓力,以確保農作物的安全並預防環境污染。農業會議上,許多會員國農業部長也擔心執委會的提案不但會分裂農產品國際市場,並也可能與WTO規則相衝突。 由於預期執委會7月份的提案可能將被撤回或大幅修改,參與農業會議的各國部長也都同意在這過渡時期成立專責的工作小組,以資因應該提案所引致的眾多批評。就現階段看起來,GMO爭議還會在歐盟繼續上演,後續的相關討論值得繼續觀察。