日本於2013年6月由智慧財產戰略本部發布了「智慧財產政策願景」,作為自公布後未來十年中長期智慧財產政策的核心,其後每年均依此制定各年度的智慧財產推進計畫。
延續前揭「智慧財產政策願景」內容,智慧財產戰略本部於今年7月4日公布「智慧財產推進計畫2014」,除仍以「為強化產業競爭力,構築全球性智財系統」、「中小、新創企業的智財管理強化支援」、「對應數位網路社會的環境建構」、「強化以內容為中心的軟實力」等四項領域作為核心之外,另經由2013年10月起設置的「檢證。評價。企畫委員會」選擇十二項議題進行充分的討論,並以此十二項議題作為制定今年度「智慧財產推進計畫2014」的基礎。
此外,委員會並針對單一部會進行施政將有所困難,有必要進行跨部會橫向協力的五項課題設置特別任務小組,列為「智慧財產戰略本部最重點的五支柱」,分別為:1、職務發明制度根本性的修正;2、營業秘密保護整體性的強化;3、中小、新創企業和大學的海外智財活動支援;4、數位內容的海外拓展及與搏來客行銷間的協力;5、加速建構以促進數位典藏的利活用。日本智財戰略本部並期待此「智慧財產戰略本部最重點的五支柱」能發揮司令塔的功能,對相關連的政策發揮引導的功用。
歐盟執委會(European Commission)於2020年3月6日提出「歐洲氣候法」(European Climate Law)草案,執委會提出該草案之目的,係為實現2019年「歐盟綠色新政」(European Green Deal)所確立的目標,以敦促歐盟所有政策及公、私部門,皆能為零碳排願景共同努力。歐盟期望在2050年前成為世界第一個碳中和地區,並轉型為一個經濟成長卻不損及資源消耗與開採的綠色經濟體。該法性質屬於「規則」(regulation)的法律位階,具有普遍性規範效力,得直接適用於歐盟成員國,意即歐盟成員國必須遵守及實施歐洲氣候法的規範內容。「歐洲氣候法」草案全文共11條條文,其規範重點及法制架構,簡要整理如下: 氣候法草案之法律框架應與歐盟現行政策保持一致性,例如再生能源、綠色新政下的投融資計畫、產業戰略及循環經濟行動計畫等,並審查歐盟能否將原先2030年與1990年相比減少40%的減量目標,提高至減少50至55%。 法律基礎應奠基於維護、保護及改善環境品質,輔助及加強國家與地方因應氣候變遷的行動措施;在符合比例原則下,要求歐盟成員國針對氣候中和目標採取必要保護措施。 依據歐盟基本權利憲章第37條環境保護之要求,有關高標準之環境保護及環境品質改善,必須納入歐盟政策及符合永續發展原則;透過氣候法來促成及凝聚社會轉型的共識,該法要求執委會應促進利害關係人及公民社會的參與,增強公民參與的交流,透過社會參與達成廣泛的永續發展共識,並規劃多層次氣候與能源的社會對話。 考量歐盟內部公平且團結的重要性,執委會於2023年9月開始,每隔5年將監測與評估歐盟及各會員國之綱要政策與保護行動,並針對不一致行動或保護不足情形,將提供適當的改善建議及具體措施,藉以確保歐盟成員國彼此間氣候政策與歐盟框架保持一致。 歐盟執委會期望透過具有強制約束力的法制框架,除實現巴黎協定之承諾(2050年前達到零排放之願景)外,更是為了結構性脆弱與抵禦氣候變遷能力不足的成員國,提供一個公平的轉型框架。目前該草案已於2020年5月完成公眾意見徵集,歐盟執委會雖未明確公布預計通過的日期及相關規劃,但其將於2021年6月前盤點相關規範,藉以整體性調修法制規範與氣候治理行動。
美國FTC認為政府擴大拜杜法權介入權適用範圍將引發專利叢林危機美國聯邦貿易委員會(Federal Trade Commission, FTC)於2024年2月6日針對「介入權指引草案」(Draft Interagency Guidance Framework for Considering the Exercise of March-In Rights)提交意見書。介入權指引草案由美國國家標準技術研究院(National Institute of Standards and Technology, NIST)2023年12月8日公布於聯邦公報(Federal Register),旨在訂立政府機關發動《拜杜法》(Bayh-Dole Act)第203條「介入權」(March-in rights)之判斷流程與標準,以確保介入權發動具一致性。根據草案內容,當受政府補助之研發成果若經商業運用後被以「不合理價格」販售,而未滿足民眾健康與安全需求時,提供補助之政府機關應適時介入。 然而,介入權指引草案將「價格合理性」納入介入權發動要件,被美國各界質疑係為達成拜登政府打擊藥價之政策目的,亦即透過擴大、強化介入權之方式,將「受政府補助之專利藥」強制再授權專利,以降低藥品價格。 FTC於意見書中亦對此爭議提出看法,認為美國人民就處方藥須支付不斷上漲之昂貴價格,雖然賦予各機關審查「價格合理性」,將使得介入權發動更為廣泛且靈活,並得以監督藥品價格。惟擴大、強化介入權仍有隱患,尤其製藥公司恐為了保護其藥品專利,因此擴大申請專利權範圍導致專利叢林(patent thicket)現象產生,例如除將活性成分申請專利外,另將製程、劑型亦申請專利,此為未來各政府機關應該共同解決之問題。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
韓國最高法院判決以虛擬貨幣買賣現金之交易為合法韓國最高法院於2010年1月10日,針對一項以線上遊戲貨幣換取現金所構成之刑事案件做出最終判決,認定此一行為並不違反韓國遊戲產業振興法施行令第18條 之3之禁止交易規定,從而不構成犯罪。 本案事實為兩名知名線上遊戲「天堂」(Lineage)之玩家陸續於2007-2008年間,以其於該遊戲中所購得,約值2億3千4百萬韓圜之虛擬貨幣「天幣」(Aden),陸續轉賣給其他約2000位遊戲玩家,以賺取價差。該案於2008年經釜山檢察廳依違反遊戲產業振興法施行令起訴,並聲請簡易判決後,兩名玩家分別被處以5百萬及3百萬韓圜之罰金。經兩名玩家提起正式裁判請求後,釜山地方法院仍維持簡易判決之結果,僅將罰金降至4百萬及2百萬韓圜。兩名玩家仍以不服判決為理由上訴至釜山高等法院。於此一上訴審中,釜山高等法院即以該交易所使用之虛擬貨幣並非來自於線上賭博遊戲或其他射悻性之途徑,故不違反韓國遊戲產業振興法施行令第18條 之3之規定,改判兩名玩家無罪。就此一上訴審判決,檢察廳另以該知名線上遊戲仍帶有諸多射悻或運氣成分,從而其取得虛擬貨幣之方式與賭博遊戲相似為理由,向最高法院提起上訴;唯最高法院認釜山高等法院之判決認事用法並無違誤,從而駁回檢察廳上訴,本案判決確定。 對於此一判決,各方反應並不一致。於最高法院判決出爐後,韓國文化觀光體育部即發表正式聲明,表示此一無罪判決係基於法院認定本案缺乏相關認定「不正常遊戲管道」是否存在之證據,而並非一律認定虛擬貨幣與現金之間的買賣或兌換交易均為合法。但一般遊戲產業界均認為,此一判決之作成確實開啟了線上遊戲中另一種獲利市場之可能性。如再配合2009年9月韓國法院所作成對於線上遊戲中的虛擬貨幣交易須課徵10%加值稅的判決進行觀察,則此種交易方式是否會對於韓國整體遊戲產業發生結構性之重大影響,應值得期待。