亞太經濟合作組織(APEC)糧食安全政策夥伴關係機制(PPFS)2014年8月14日在北京召開成員會議

  亞太經濟合作組織(Asia-Pacific Economic Cooperation, APEC)糧食安全政策夥伴關係機制(Policy Partnership on Food Security, PPFS)成員國、APEC秘書處、APEC工商諮詢理事會秘書處、糧農組織代表在北京召開全體成員會議,就亞太糧食安全相關議題與糧食安全政策夥伴關係機制(PPFS)建構進行討論。PPFS為政府部門與民間組織、企業溝通對話之平台,係APEC解決亞太糧食安全所建構之機制,茲就本次會議作成之重點分述如下:

1.亞太經濟合作組織(APEC)糧食安全政策夥伴關係機制(PPFS)全於會中作成3項倡議:第一,加強APEC成員糧農政策對話與交流,協商區域合作的規劃和措施。第二,降低貿易和投資成本,消除貿易壁壘促進糧農貿易。第三,加強各政府、產業與個體農民交流,促進私部門參與糧食安全之商業模式,以利亞太糧食安全之永續。相關糧食安全議題及合作方向包括:糧食生產與技術移轉跨國合作;糧食儲備、供應鏈及降低糧損技術之交流與合作和貿易合作、投資與基礎建設等。

2.本次會議除作成前述宣示性倡議外, 另通過「APEC減少糧食損失和浪費行動計畫」、「APEC糧食安全商業計畫」、「APEC增強糧食標準與質量安全互通行動計畫」、「2020糧食安全路線圖」等修訂文件。其中,「2020糧食安全路線圖」,提及PPFS將致力於降低亞太區域之糧食農損失,並宣示於2020年降低農損總量10%之具體目標(以2011-2012年度之農損總量為比較基準)。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 亞太經濟合作組織(APEC)糧食安全政策夥伴關係機制(PPFS)2014年8月14日在北京召開成員會議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6626&no=64&tp=1 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
歐盟執委會發布關於歐洲境內資料流監控之新研究

  歐盟執委會(The EU Commission)於2022年2月3日發布了一項研究,其繪製並預估歐盟27個成員國以及冰島、挪威、瑞士和英國等國家彼此之間的主要雲端基礎設施的資料流量。該研究概述了各級產業、位置、企業規模和雲端服務類型的雲端資料流入和流出的流量和類型。政策、決策者、商業領袖與公共行政部門可以將其作為參考,以支持對未來貿易協定、工業決策和雲端投資的決策。   在歐盟的歐洲資料戰略中,認識到獲取有關資料流的經濟情報的戰略重要性,因此提出了資料流戰略分析框架的發展。為了實現這一關鍵行動,歐盟執委會開展了上述關於繪製資料流的研究,首次開發和測試了一種全新、自我維持與可複製的方法,從而產生了資料流可視化工具,用於測量、映射和分析歐洲31個國家與地區的各級產業、地理和企業規模的雲端資料流。而該資料流可視化工具中顯示的資料預計將每年更新一次。使用的資料收集來源從官方統計資料等主要來源到調查和訪談等次要來源。   該工具得以讓歐盟執委會: 一、繪製和估計歐盟27個成員國(即歐盟內部資料流)和冰島、挪威、瑞士和英國(即歐盟外資料流)的雲端計算領域主要資料流的數量 二、預測至2030年的資料流出 三、分析各產業、公司規模和雲端服務類型的資料流量   該研究顯示2020年最大的資料流來自醫療衛生產業,而德國的資料流入量最大。該報告還估計,到2030年,來自歐洲企業的資料流量將是2020年的15倍。   作為資料流市場關鍵層面之一,透過進一步調查資料趨勢,將協同即將出現的資訊法案打造一個更加生動、動態和流動的雲端市場。

新加坡修訂「建築物資通訊設施實施條例」

  為了落實提供高速、穩定的寬頻服務,新加坡資訊通訊發展管理局(IDA)今( 2013)年4月針對新建物,修訂「建築物資通訊設施實施條例」(Code of Practice for Info-Communication Facilities in Buildings),以加速家庭寬頻網路發展,滿足新興服務之所需。   本條例以光纖普及為前提,賦予新建物開發商或是業者諸多義務,以「用戶需要開放項目」與「限制建物內空間技術」最為重要。所謂的「用戶需要開放項目」,是指開發商或是屋主須讓新建物具有6項基礎設施,包括:(1)引進管(Lead-in pipes)、地下管(Underground pipes)與人手孔(Manholes);(2)電信主配線箱(Main Distributor Frame, MDF);(3)電信設備機房(Telecommunication Equipment Room, TER );(4) 行動通訊布放室(Mobile Deployment Space,MDS);(5)電信櫃豎版(Telecommunication risers);(6)寬頻同軸電纜系統(a Broadband coaxial cable system)或具有光纖電纜(Optical Fibre Cable)等級之終端點。其中,第六項是要求開發商與擁有者鋪設線路範圍,包含現有道路至電信主配線箱之管道,且其線路等級必須是同軸電纜或光纖以上,以確保屋內終端線路皆得以承載100M以上速率。至於,「限制建物內空間技術」,是指屋內配線至家中客廳與每個房間,應鋪設同軸電纜或是非屏蔽雙絞線(六類以上),使民眾能無所不在享受快速網路之便利。   除上述固網建設規範外,為了達成行動寬頻戶外覆蓋率99%、室內覆蓋率85%之規定,本條例亦要求開發商或擁有者須無償提供電信業者行動通訊佈放室。雖然,MDS的大小視行動寬頻涵蓋範圍與發展大小而定,最小的行動通訊發展室範圍是18平方米。不過,本條例允許MDS可不必是一個連續的空間,以兼顧開發商與擁有者對新建物空間之規劃。本草案落實後,預計不僅可減少電信商租賃放置基地台之成本外,亦可解決與管理委員會或業者交涉之時間,讓電信商能更為迅速完成行動寬頻覆蓋率。   IDA預計本條例實施後,將可達成「下一代國家資通訊基礎建設發展計畫」中,規劃2015年光纖覆蓋率100%、提供民眾1Gbps固網速度之理想,使新加光纖覆蓋率可達到95%。

奧克蘭市(Oakland)成為美國第三個禁止公部門使用人臉辨識技術的城市

  近年來,人臉辨識(Face recognition)技術迅速發展,增加便利性的同時,也伴隨了種種隱憂,如:對隱私權的侵害、公部門權力濫用等,是以加州舊金山市(San Francisco)和麻薩諸塞州薩默維爾市(Somerville)分別在今年(2019)5月和6月發布公部門使用人臉辨識技術的相關禁令,加州奧克蘭市(Oakland)並於7月16日跟進,成為美國第三個禁止公部門使用人臉辨識技術的城市。   2018年麻省理工學院曾針對人臉辨識技術的正確率做過研究,其研究結果報告顯示黑人女性辨識錯誤率超過30%,遠不如白人男性;美國公民自由聯盟(American Civil Liberties Union, ACLU)也針對Amazon人臉辨識軟體Rekognition做過測驗,結果該系統竟誤將28名美國國會議員顯示為嫌疑犯,這兩項研究顯示,人臉辨識技術存有極高錯誤率且對種族間存有很大的偏見與歧視。對此奧克蘭市議會主席卡普蘭(Rebecca Kaplan)一項聲明中表示:「當多項研究都指出一項新興技術具有缺陷,且造成寒蟬效應的時候,我們必須站出來」。   卡普蘭並表示:「建立社區和警察間信任與良好關係以及導正種族偏見是很重要的,人臉辨識技術卻反而加深此問題」、「對於隱私權和平等權的保護是最基本的」,故奧克蘭市通過禁止公部門使用人臉辨識技術的法令,原因如下: 人臉辨識系統所依賴的資料集,具高度不準確性。 對於人臉辨識技術的使用與共享,尚缺乏標準。 這項技術本身具有侵犯性,如:侵犯個人隱私權。 政府如果濫用該技術所得之資訊,可導致對弱勢族群的迫害。   雖然目前美國僅有三個城市通過政府機關禁止使用人臉辨識技術的法令,但依照目前的發展狀態,其他的城市甚至州在未來也可能會跟進頒布禁令。

美國科羅拉多州通過《人工智慧消費者保護法》

2024年5月17日,科羅拉多州州長簽署了《人工智慧消費者保護法》(Consumer Protections for Artificial Intelligence Act,Colorado AI Act,下簡稱本法),其內容將增訂於《科羅拉多州修訂法規》(Colorado Revised Statutes,簡稱CRS)第6篇第17部分,是美國第一部廣泛對AI規範的法律,將於2026年2月1日生效。 本法旨在解決「高風險人工智慧系統」的演算法歧視(Algorithmic Discrimination)的問題 ,避免消費者權益因為演算法之偏見而受到歧視。是以,本法將高風險AI系統(High-risk Artificial Intelligence System)定義為「部署後作出關鍵決策(Consequential Decision)或在關鍵決策中起到重要作用的任何AI系統」。 而後,本法藉由要求AI系統開發者(Developers)與部署者(Deployers)遵守「透明度原則」與「禁止歧視原則」,來保護消費者免受演算法歧視。規定如下: (一)系統透明度: 1.開發者應向部署者或其他開發者提供該系統訓練所使用的資料、系統限制、預期用途、測試演算法歧視之文件以及其他風險評估文件。 2.部署者應向消費者揭露高風險人工智慧系統的預期用途,也應在高風險人工智慧系統做出決策之前向消費者提供聲明,聲明內容應該包含部署者之聯絡方式、該系統的基本介紹、部署者如何管理該系統可預見之風險等資訊。 (二)禁止歧視: 1.開發者應實施降低演算法歧視之措施,並應協助部署者理解高風險人工智慧系統。此外,開發者也應該持續測試與分析高風險人工智慧系統可能產生之演算法歧視風險。若開發者有意修改該系統,應將更新後的系統資訊更新於開發者網站,並須同步提供給部署者。 2.部署者應該實施風險管理計畫,該風險管理計畫應包含部署者用於識別、紀錄降低演算法歧視風險之措施與負責人員,且風險管理計畫應定期更新。在制定風險管理計畫時,必須參考美國商務部國家標準暨技術研究院(National Institute of Standards and Technology, NIST)的《人工智慧風險管理框架》(AI Risk Management Framework, AI RMF 2.0)與ISO/IEC 42001等風險管理文件。 美國普遍認為科羅拉多州的《人工智慧消費者保護法》為目前針對人工智慧系統最全面之監管法規,可作為其他州有關人工智慧法規的立法參考,美國各州立法情況與作法值得持續關注。

TOP