從歐盟、新加坡固網法規檢視台灣高速寬頻環境發展困境

刊登期別
第26卷第9期,2014年09月
 

※ 從歐盟、新加坡固網法規檢視台灣高速寬頻環境發展困境, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6650&no=64&tp=1 (最後瀏覽日:2025/12/11)
引註此篇文章
你可能還會想看
英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

Google的下一步:行動廣告市場

  美國網路搜尋龍頭Google於2009年11月提出一項以7億5千萬美金收購行動廣告網絡商ADMob的計畫,大張旗鼓地準備涉足這個目前於所有廣告型態中,規模相對微小的區域。然而,美國二大消費者團體Consumer Watchdog及Center for Digital Democracy卻不認同這項收購計畫,甚至認為Google此舉將使其於行動廣告市場中形成獨占,以及甚有侵害消費者隱私權的可能,從而向聯邦交易委員會(Federal Trade Commission, FTC)喊話,要求FTC阻止Google此次的商業併購行為。   然而,消費者團體的擔憂亦非毫無道理,蓋Google在網路搜尋與線上廣告均有難以撼動的地位,而ADMob目前在行動廣告市場之佔有率亦為前茅,是故兩者一旦合併,消費者團體認為,Google此舉即是在為自己日後於此一極具發展潛力的市場中,先行買下一席位子。此外,由於GPS技術的發達,Google附加的Google Map定址應用更有可能因其實質跨足提供行動服務而有侵害使用人隱私權的可能。   雖言如此,FTC仍未明確表示對該項交易的意見,此外,無獨有偶地,蘋果電腦對行動廣告的市場亦開始有所行動,根據另一行動廣告服務提供者Quattro Wireless指出,蘋果公司正在計畫其中的細節。由此可見,不論FTC最後的結論為何,資訊業者之於行動廣告的戰爭已經開始。

「挑戰智慧美國」(the Smart America Challenge) 計畫

  美國聯邦政府於2013年12月啟動「挑戰智慧美國」(the SmartAmerica Challenge)計畫,目標是匯集產官學研以呈現網實整合系統(Cyber-Physical System, CPS)與智慧聯網如何能夠創造就業機會、新的商業機會、以及為美國帶來社經上之利益。2014年6月,24個技術團隊及超過100個組織機構共同於華府進行智慧聯網應用展示,藉此展現智慧聯網如何促進運輸、緊急服務、健康照護、安全、節能、以及製造。於整合性之解決套案上,「挑戰智慧美國」計畫選定加州的聖荷西市(The City of San Jose),由聖荷西市政府與Intel公司共同建立「智慧聯網智慧城市示範平台」(IoT Smart City Demonstration Platform)。研究團隊於城市各處廣泛裝置感測器,蒐集空氣品質、噪音、交通流量、能源效率等相關資料,藉此試驗城市如何利用智慧聯網技術來改善在地市民的整體生活。在我國,2014年則可稱為智慧城市發展元年,經濟部技術處與工業局等中央政府機關與新北市、桃園縣、新竹市、台中市等地方政府皆相繼投入並推動智慧城市計畫。搭配軟硬體之技術整合與相關產業之參與、以及法人與學術機構之投入,我國透過智慧聯網與網實整合系統以發展智慧城市之未來值得期待。

英國Royal Free國家健康服務基金信託與Google DeepMind間的資料分享協議違反英國資料保護法

  英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2017年7月公告Royal Free國家健康服務基金信託(Royal Free London NHS Foundation Trust)與Google人工智慧研究室DeepMind之間的資料分享協議,違反資料保護法(Data Protection Act)。   該協議之目的在使DeepMind利用Royal Free所提供的醫療資料,開發一款名為Streams的應用程式,透過人工智慧系統分析得知病患惡化之情況,並以手機警示方式通知臨床醫生。由於涉及病患的可識別個人資料且人數多達160萬人,協議的合法性,尤其在資料分享是否經病患同意方面,受到質疑。   Royal Free與DeepMind主張因應用程式是直接對病患進行醫療照護,具有病患默示同意(implied consent)之正當基礎,且資料經加密後才傳給DeepMind。惟經ICO調查結果如下: 就資料將被使用作為應用程式測試一事,病患未獲充分告知亦無合理期待; 雖執行隱私影響評估,惟僅於資料傳給DeepMind後才進行,無法發揮事前評估作用; 應用程式尚在測試階段,無法說明揭露160萬病患紀錄的必要性與手段合理性。   目前Royal Free已承諾改進以確保其行為合法性。ICO之認定突顯創新不應以「減損法律對基本隱私權保障」作為代價。

TOP